Elementary

Color and temperature of objects

Submitted by PocketLab on Fri, 02/09/2018 - 20:39

Introduction:
On a hot, sunny day, would you rather wear dark or light-colored clothes? Have you ever walked across dark pavement barefoot on a hot day? How did that feel? Would you rather walk on the dark pavement or a lighter colored sidewalk along green grass? In this experiment you will investigate how the color of objects can affect it’s temperature. 

Temperature changes in sand versus water.

Submitted by PocketLab on Fri, 02/09/2018 - 20:36

Introduction:

Objective: The objective of today’s lab is to determine if water or sand heats up more quickly and “keeps” its heat longer. You will then use your collected data to answer the following question: How does a hot, sunny day at the beach affect a fish in the water differently from a crab on the sand? Explain.

Energy Conservation – Transferring Kinetic Energy to Thermal Energy

Submitted by PocketLab on Fri, 02/09/2018 - 20:33

Introduction:

The law of conservation of energy states that the total energy of an isolated system remains the same. Over time, all energy is conserved. Energy is neither created nor destroyed – instead it transfers from one form to another. Objects in motion have kinetic energy. Thermal energy is energy in a system due to its temperature.

Hot Wheels Racing with PocketLab

Submitted by PocketLab on Wed, 01/31/2018 - 18:45

Engage your students in engineering practices and classic force and motion and energy concepts in a fun and unique way. With a PocketLab attached to a Hot Wheels car and a track full of magnets, you'll be able to collect data on position, velocity, acceleration, and energy as your car zips up an over hills and around loops. Turn your students into theme park engineers and have them design "roller coaster" tracks, iterate on car designs for races, or teach basic concepts on position and velocity. This activity is sure to help engage your students in a meaningful way. 

No Ice Skates, No Rink, No Talent: NO PROBLEM!

Submitted by Rich on Sat, 01/27/2018 - 21:55

Almost everyone enjoys watching the figure skating events in the Winter Olympic Games!  But only a select few worldwide with the required skills and God given talent have the opportunity to compete.  What about the rest of us?  We can’t even imagine how the Olympians manage to perform all of those fancy quad jumps and camel, layback, upright, and sit spins.  But we can sit in a chair, and with the right chair, we too can do a sit spin of sorts!  Add PocketLab and we can also learn some physics about conservation of angular momentum.

Maker Project: Voyager and littleBits™ Pet Monitor

Submitted by Rich on Fri, 01/19/2018 - 22:31

Have you ever wondered what your dog does all day long while you are at work?  Is resting the major “activity” or is there some occasional wandering?  Is there silence or periodic barking, such as when the mailman comes or a squirrel is seen through a window?  The author of this lesson has a couple of schnauzers, known for their predisposition for barking.  “Welcome to the Bark Side” is a frequent phrase voiced to passersby while I am taking the schnauzers for a walk.  But how much do they bark when cooped up in the house and I am out someplace?   And do they move around a lot or mostly nap

Is Global Warming FAKE NEWS? Creating a Bottle Ecosystem

Submitted by DaveBakker on Tue, 07/25/2017 - 22:56

Can you devise an experiment to see whether increased CO2 (carbon dioxide) in the atmosphere contributes to warming? We found a teacher who tweeted exactly what you need! @MontessoriMicky  shared with us his lesson plan on a Bottle Ecosystem and had his class run an experiment using PocketLab to measure the heat absorption of a glass bottle filled with CO2 vs normal air as a control.

Angular Rotation Game

Submitted by PocketLab on Fri, 06/02/2017 - 18:43

Exploration

Angular velocity is the rate of rotation of an object along a specific axes. For example, the blades of a ceiling fan rotate around the fan’s central axis. Angular velocity is often measured in the number of degrees the object rotates every second (°/sec) or the number of complete revolutions every minute (RPM). The PocketLab’s gyroscope measures the angular velocity of the PocketLab about the x-, y-, and z-axis.

Objective

Ceiling Fan in Winter

Submitted by PocketLab on Fri, 06/02/2017 - 18:08

Exploration

When it is cold outside, it is often thought that fans aren’t needed. However, it may be that a fan can bring warm air near the ceiling down to floor level, increasing comfort without raising the thermostat. Energy could therefore be saved.

Objective

In this experiment, students will:
1) Determine how a ceiling fan affects the temperature in a room, both near the floor and near the ceiling.

Download PDF for complete lab activity