Skip to main content

Lessons

How to teach NGSS MS-PS2-2: Newton's Second Law

Profile picture for user PocketLab
Submitted by PocketLab on Fri, 02/08/2019 - 18:43

Using a Half-Atwood Machine for Newton's Second Law

The Half-Atwood Machine consists of a cart and a weight connected by a string. It can be a perfect tool for tackling NGSS MS-PS2-2, which is centered around planning an investigation into Newton’s Second Law. Specifically, the standard says: 

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Newton’s Third Law Experiment with Crash Cushions

Profile picture for user PocketLab
Submitted by PocketLab on Wed, 02/06/2019 - 18:44

Engineering Crash Cushions to Learn Newton's Third Law

Newton's Third Law Example

Car crashes are a dangerous example of Newton's Third Law. The car exerts a large force on the wall and the wall then exerts a large force back onto the car. Civil engineers are always trying to think of new ways to make highways safer. Building crash cushions along highways that reduce the impact force of the collision will, according to Newton's Third Law, also reduce force experienced by the passengers of the car. This can save lives.

Grade Level

Hysteresis with Rubber Bands

Profile picture for user Rich
Submitted by Rich on Wed, 02/06/2019 - 17:49

Introduction to Hysteresis

Hysteresis can be defined as a lag time in the response of a system to forces placed on the system.  The response of the system depends not only on the present magnitude of the force but also on the previous history of the system.  From the point of view of mathematics, the response to the force is a double-valued function.  This means that one value applies when the force is increasing, while another value applies when the force is decreasing.  A graphical plot of force and re

Subject
Grade Level

How does a Pressure Sensor Work - Physics of Probeware

Profile picture for user clifton
Submitted by clifton on Wed, 02/06/2019 - 17:02

Introduction to Pressure Sensors

Pressure sensors are one of the most widely used sensors and can be found in probeware for lab measurements, but more commonly in billions of devices including smartphones, wearables, automobiles, drones, weather centers, and medical instruments. Pressure sensors were one of the first sensors to be miniaturized and mass produced at a low cost through microelectromechanical systems (MEMS) fabrication.

Subject
Grade Level

How to teach NGSS MS-PS2-1: Newton's Third Law

Profile picture for user PocketLab
Submitted by PocketLab on Wed, 02/06/2019 - 00:19

Using PocketLab to Teach MS-PS2-1: Engineering Design and Newton's Third Law

NGSS Standard MS-PS2-1: What's in the standard?

Teaching NGSS Standard MS-PS2-1 can have challenges. Students need to apply principles in forces and motion to engineer a design that will solve a problem. The performance expectation for the standard states: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

Subject
Grade Level

Rotational Motion: Moment of Inertia

Profile picture for user Rich
Submitted by Rich on Thu, 01/24/2019 - 20:05

Rotational Motion and Moment of Inertia Lab Setup

Figure 1 shows a ramp and three distinctly different objects that you will release from rest at the top.  Each object will roll downward to the end of the ramp without slipping, resulting in rotational motion.  The roll of Gorilla tape has a shape known as an annular cylinder.  The can of jellied cranberry sauce is a solid cylinder.  The cardboard tube, in contrast to the can, is hollow.  All three of these objects will rotate about their central cylinder axis while rolling down the ramp.  Each of these three objects has a

Subject
Grade Level

Physics from a Croquet Mallet and Ball

Profile picture for user Rich
Submitted by Rich on Sat, 01/19/2019 - 20:23

Introduction

Various forms of the sport now known as croquet have been around for centuries.  Plastic or wooden balls are struck with a mallet through hoops, called wickets in the United States.  The components of a typical croquet set are shown in Figure 1.  Very popular in the UK, there is even a World Croquet Federation for those who take the sport seriously.  In the United States, it is common to set up croquet as a garden game at graduation and birthday parties.  But who would have thought that a croquet ball and mallet equipped with PocketLab Voyager and the PocketL

Subject
Grade Level

PocketLab Voyager: Newton's Law of Cooling

Profile picture for user Rich
Submitted by Rich on Thu, 01/03/2019 - 03:02

Newton's Law of Cooling

In this experiment students will use PocketLab Voyager to collect data related to the cooling of a container of hot water as time goes on.  Sir Isaac Newton modeled this process under the assumption that the rate at which heat moves from one object to another is proportional to the difference in temperature between the two objects, i.e., the cooling rate = -k*TempDiff.  In the case of this experiment, the two objects are water and air.

Subject
Grade Level

Fluid Pressure in a Fluid at Rest

Profile picture for user Rich
Submitted by Rich on Fri, 12/21/2018 - 01:22

Introduction

In a PockeLab lesson entitled "Hydrostatic Pressure Lab", posted by kwarnke in October 2017, students investigate the relationship between the height of a column of water and hydrostatic pressure.  The lab results worked very well in this regard, but the apparatus uses a 5-gallon jug with modifications, a bicycle pump, and 5 meters of vinyl tubing.  We should be able to come up with a much simpler and less expensive fluid pressure apparatus to achieve the same result, as the

Subject
Grade Level