Skip to main content


Maker Project: Voyager and littleBits™ Music Visualizer

Submitted by Rich on Sun, 01/21/2018 - 19:49

It’s not always enough to just hear music.  Many of us enjoy visualizing it while listening.  4th of July fireworks are commonly synced to Sousa’s The Stars and Stripes Forever.   Concert goers see spotlights flashing to their favorite pop songs.  Modern home owners play their sound systems synchronized with Phillips Hue lighting and nanoleaf® light panels with a Rhythm module.  For many years, classic visualizers have di

Grade Level

Maker Project: Voyager and littleBits™ Pet Monitor

Submitted by Rich on Fri, 01/19/2018 - 22:31

Have you ever wondered what your dog does all day long while you are at work?  Is resting the major “activity” or is there some occasional wandering?  Is there silence or periodic barking, such as when the mailman comes or a squirrel is seen through a window?  The author of this lesson has a couple of schnauzers, known for their predisposition for barking.  “Welcome to the Bark Side” is a frequent phrase voiced to passersby while I am taking the schnauzers for a walk.  But how much do they bark when cooped up in the house and I am out someplace?   And do they move around a lot or mostly nap

Six Shades (not fifty!) of Grey: PocketLab Voyager/Scratch Dice

Submitted by Rich on Tue, 01/16/2018 - 22:20

This is a programming project that capitalizes on PocketLab-Scratch Integration.  This project makes use of the Scratch random number block to simulate rolling an ordinary six-sided die.  The six random but equally likely outcomes are mapped to sprites of six different shades of gray.  Voyager’s light sensor is then used to determine the value of the die’s roll, mapping light sensor values to the corresponding sprite from six images of the face up side of the die.  A short action video of the author’s solution accompanies this lesson. 


CloudLab Curve Fit Feature Preview: Inverse Square Law of Light

Submitted by Rich on Fri, 01/12/2018 - 22:15

The ability to quickly match empirical data to well-known mathematical models is an essential feature in the analysis of experiments.  This technique is generally referred to as curve-fitting.  The up-and-coming, but not yet leased, CloudLab software from PocketLab provides an easy way to fit data to models including linear, quadratic, power, exponential, and logarithmic.  This curve-fitting can be done for any selected region of PocketLab data.  This lesson provides a sneak preview of this CloudLab featu

Grade Level

CloudLab Statistics Feature Preview: Determining Curve Radius

Submitted by Rich on Thu, 01/11/2018 - 20:35

Collection of angular velocity and acceleration sensor data is prone to seemingly random “noisy” variations, even when the associated motion appears to be smooth to the observer.  The easiest way to compensate for this variation is to compute the mean value for the duration of such a random variation.  The up-and-coming, but not yet leased, CloudLab software from PocketLab provides an easy way to compute means, standard deviations, and other statistics for a selected region of PocketLab data.

Grade Level

PocketLab Voyager Rides Anki OVERDRIVE Supercar

Submitted by Rich on Mon, 01/08/2018 - 21:07

People of all ages have enjoyed playing with toy race cars for many decades.  Anki OVERDRIVE is currently one of the most popular and technologically advanced race car sets available in the marketplace.  Why not attach Voyager to an Anki supercar and give your students a fun way to study angular velocity?!  Each student group can design there own racetrack and obtain a Voyager snapshot of angular velocity vs.

Grade Level

LED Flame Lamp: Random or Cyclical Illumination?

Submitted by Rich on Wed, 01/03/2018 - 19:00

Late in 2017 a handful of companies began selling LED flame lamps that do a great job of simulating an actual burning fire. The illumination is bright, has a color temperature of a warm orange flame, and the light produces negligible heat while running at under 5 watts of electric power. This light seems to be a great replacement for traditional gas lanterns, hurricane lamps, and oil lamps.  The simulated flame is unbelievably realistic in the flame light purchased by the author. No obvious pattern could be detected in the flickering LED flame by observing the light with the eye.

Grade Level

Programming Exercise:Voyager Temperature Probe Controlled Scratch Teapot

Submitted by Rich on Fri, 12/29/2017 - 01:16

Here is a project that will challenge your students’ skill in interfacing PocketLab Voyager with Scratch Programming.  The challenge is to program the five bubbles to start bubbling upwards in the teapot—one bubble at 90ᵒC, two at 92ᵒC, three at 94ᵒC, four at 96ᵒC, and five bubbles at 98ᵒC.  When the temperature of the teapot has reached 100ᵒC, the phrase Full Boil should appear.  See the movie accompanying this lesson for clarification of the intended result.  When the burner under the real teapot is turned off and cooling begins, bubbling should go away in revers

A Lesson on Calibration: Interfacing PocketLab Voyager with Modular Robotics Cubelets

Submitted by Rich on Tue, 12/26/2017 - 18:40

Sensor-based inquiry is a dominant force in today’s science education, with the calibration of sensors being essential for high-quality measurement.  Wikipedia® defines calibration as “the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy.”  In this lesson students will study the process of calibration:

Grade Level