Skip to main content

High School

Magnetic Field on a Current Loop's Axis

Submitted by Rich on Wed, 05/02/2018 - 17:13

Introduction

In this lesson students will find that a current-carrying loop can be regarded as a dipole, as it generates a magnetic field for points on its axis.  Students use PocketLab Voyager and Phyphox software to compare experiment and theory for the magnetic field on the axis of a current loop.  A similar experiment not making use of Phyphox can be found by clicking this link.  An experiment making use of a magnet, instead of a

Subject
Grade Level

Isaac Newton and the 3rd Law of Motion

Submitted by Rich on Mon, 04/30/2018 - 14:37

Isaac Newton

Isaac Newton is well-known for the apple that hit his head and the discovery of gravity.  His three Laws of Motion, however, are among the most famous laws of physics.  In this lesson, we are especially interested in Newton’s Third Law of Motion—all forces between two objects are equal in magnitude and opposite in direction.  We will be studying collisions between two identical carts that are bouncing back-and-forth, much like a Newton’s cradle with just two steel balls.  Repelling magnets attached to the front bumpers of each of the carts al

Subject
Grade Level

Magnetic Dipole Experiment: Inverse Cube Law

Submitted by Rich on Sun, 04/22/2018 - 15:28

Introduction

Magnets, from the traditional alnico bar magnets to the modern neodymium magnets, have been of interest to most everyone for decades. The attraction or repulsion of two such magnets when brought close together is particularly interesting. This can be expressed by making quantitative measurements relating magnetic field strength to distance from the magnet.

Subject
Grade Level

Physics, Science and Math Days

Submitted by DaveBakker on Wed, 04/18/2018 - 23:40

Amusement parks provide an authentic opportunity to conduct real science and apply physics and math concepts in real-world situations.  While visiting an amusement park, not only will you have a fun-filled day of riding rides, but you will get to apply what you have learned about estimation, measurement, motion, forces, gravity, energy, and systems.

Subject
Grade Level

Two Voyagers Connected to a Single Device via Phyphox: A Conservation of Momentum Experiment

Submitted by Rich on Mon, 04/16/2018 - 21:15

In the study of collisions between two carts, it is desirable to collect position data for both carts.  This can be done with a pair of Voyagers, each connected to separate devices running the PocketLab app. Starting data collection on both Voyagers by simultaneously clicking data recording on both PocketLab apps is difficult.  One cannot view the data on a single device in real time, and analysis of data requires combining data from two separate devices.

Subject
Grade Level

Two Voyagers Connected to a Single Device via Phyphox: An Experiment to Determine a Cart’s Wheel Radius

Submitted by Rich on Thu, 04/12/2018 - 22:02

It would be nice if one could connect two (or more!) Voyagers to the same device—say to an Android device or an iOS device running an app that could display concurrent data collection from both Voyagers.  Such a capability is possible by the use of Phyphox (physical phone experiments), an app developed at the 2nd Institute of Physics of the RWTH Aachen University in Germany.  The author of this lesson has been working with a pre-release Android version of this app that supports BLE (Bluet

Subject
Grade Level

Head-on Collision versus Crashing Into a Wall

Submitted by Rich on Sat, 02/24/2018 - 03:56

 

Let’s imagine two scenarios:

1.       Two identical vehicles, each of whose speedometers reads 50 mph, travel toward each other and experience a head-on collision.

2.       Another identical vehicle, traveling at 50 mph, hits an unmovable, unbreakable and impenetrable rock wall.

Which collision is more severe from the viewpoint of one of these vehicles?

Grade Level

Voyager and Speedway Wonder™: Learning Angular Velocity in a Fun Way

Submitted by Rich on Wed, 02/21/2018 - 19:54

Have your students attach Voyager to a Speedway Wonder™ car, set up a Speedway track of their own design, and they will be ready to challenge one another in a unique way.  The main idea is to collect angular velocity data while Voyager circuits the track.  Then by carefully studying the angular velocity graphs produced, determine posible layouts of the track.  A magnet at one location along the track, coupled with simultaneously measuring magneti

Grade Level

Hot Wheels Racing with PocketLab

Submitted by PocketLab on Wed, 01/31/2018 - 18:45

Engage your students in engineering practices and classic force and motion and energy concepts in a fun and unique way. With a PocketLab attached to a Hot Wheels car and a track full of magnets, you'll be able to collect data on position, velocity, acceleration, and energy as your car zips up an over hills and around loops. Turn your students into theme park engineers and have them design "roller coaster" tracks, iterate on car designs for races, or teach basic concepts on position and velocity. This activity is sure to help engage your students in a meaningful way. 

Maker Project: Voyager and littleBits™ Music Visualizer

Submitted by Rich on Sun, 01/21/2018 - 19:49

It’s not always enough to just hear music.  Many of us enjoy visualizing it while listening.  4th of July fireworks are commonly synced to Sousa’s The Stars and Stripes Forever.   Concert goers see spotlights flashing to their favorite pop songs.  Modern home owners play their sound systems synchronized with Phillips Hue lighting and nanoleaf® light panels with a Rhythm module.  For many years, classic visualizers have di

Subject
Grade Level