Skip to main content

High School

Hydrostatic Pressure Lab

Submitted by kwarnke on Fri, 10/06/2017 - 19:24

PocketLab sensors work very well for measuring air and fluid pressure.  To protect them, I have students seal them in a ziplock bag along with a paper towel (which absorbs any water that leaks in, keeping the sensor innards dry).

The attached lab worked very well to demonstrate the relationship between fluid column height and hydrostatic pressure.  The hardest aspect is modifying the 5 gallon jug by mounting a nozzle connector to its side.  It took dexterity, patience, and lots of silicon caulk.  

PocketLab Voyager/LEGO®: A Study of the Half-Atwood Machine

Submitted by Rich on Thu, 10/05/2017 - 20:05

A widely used experiment for studying Newton’s Second Law of Motion makes use of a Half-Atwood machine.  In this experiment a cart on a horizontal surface is tied to a mass hanging over a pulley.  Upon releasing the hanging mass, the cart begins to accelerate.  The magnitude of this acceleration is a quantity of great interest as it relates to the amount of the hanging mass.  In this lesson, a Half-Atwood machine is constructed using parts from LEGO®’s Simple & Powered Machines Set.  Voyager is moun

PocketLab Voyager: Deceleration of an Air Disk

Submitted by Rich on Wed, 09/27/2017 - 18:39

A very popular air disk is the Air Power Soccer Disk, available at a variety of locations including Amazon, Walmart, and Educational Innovations, Inc. at prices ranging from about $5 to $17.  Powered by four AA batteries, it rides on a cushion of air on any reasonably smooth surface.  While kids love to kick it around like a soccer ball, it is also a great companion for PocketLab Voyager when studying physics principles.  In this lesson, students quantitatively investigate the deceleration of an air disk as it

PocketLab Voyager: Investigating Thermoelectric Generators & The Seebeck Effect

Submitted by Rich on Thu, 09/21/2017 - 20:07

A thermoelectric generator (TEG) is a device that converts temperature differences directly into electrical energy.  In the past several years, there has been a great deal of research in the use of TEGs to recover electrical energy from waste heat produced in a variety of systems.  As a result of this research, the study of thermoelectric generators in physics and engineering curricula is well worth including in NGSS-based coursework.

PocketLab Voyager: Investigating Thermoelectric Cooling

Submitted by Rich on Tue, 09/19/2017 - 19:38

A French watchmaker and physicist, Jean Charles A. Peltier, observed that electric currents produce heating or cooling at the interface between two dissimilar metals.  This is now known as the Peltier effect and is used in numerous cooling applications, including air cooling of small refrigerators, beverage cooling in camping, cooling of electronic components, extraction of water in air by dehumidifiers, and cooling of CCDs in telescopes, spectrometers and cameras.

PocketLab Voyager: Vibrating Meter Sticks and Music Boxes

Submitted by Rich on Mon, 09/11/2017 - 17:38

The physics of the sounds produced by music boxes is definitely worth studying in curricula based upon NGSS (Next Generation Science Standards).   The prongs of a metal music box comb and an oscillating meter stick that overhangs a table are both examples of cantilevers--long projecting beams that are supported only at one end.  Other common examples include many suspension bridges, beams that support balconies on high rises, diving boards, airplane wings, and flagpoles mounted to the side of a building.

Voyager & Ozobot: A Quantitative Experiment on the Doppler Effect

Submitted by Rich on Mon, 09/04/2017 - 19:10

In this lesson we develop a laboratory experiment in which students quantitatively verify a major theoretical equation for the Doppler Effect when the wave source is at rest with respect to the medium and the observer is moving through the medium.  The waves are simulated waves on an iPad or similar device.  Ozobot keeps Voyager moving at a known speed, either toward or away from the wave source.

PocketLab Voyager: A Quantitative Study of Torsional Harmonic Oscillators

Submitted by Rich on Mon, 08/28/2017 - 17:40

PocketLab Voyager is perfect for performing an experiment on torsional harmonic oscillation.  Voyager is taped to a mass hanging from a spring.  The mass is given both an initial vertical translation and a torsional twist and then released.  While simultaneously bobbing up-and-down and twisting back-and-forth, the two motions are recorded by Voyager.  The period of the translational motion is recorded by the acceleration sensor.  The angular velocity sensor concurrently records information for measuring the period of the torsional oscillation. 

PocketLab Voyager: A Study of Coupled Pendulums

Submitted by Rich on Tue, 08/22/2017 - 20:26

This lesson deals with what are commonly referred to as coupled pendulums, in which energy is transferred back-and-forth between the pendulums via the coupling.  Pendulums coupled by springs are commonly studied in college physics classes during studies of simple harmonic motion.  However, our lesson makes use of string-coupled pendulums, as they are easier and less expensive to construct.