Skip to main content

Middle School

PocketLab Voyager: The Inverse Square Law of Light--Quick and Easy

Submitted by Rich on Fri, 07/14/2017 - 18:17

Virtually every student of physics has done an experiment to verify the inverse square law of lightlight intensity is inversely proportional to the square of the distance from the source of the light.  With PocketLab Voyager this is a quick and easy experiment that is also a lot of fun to perform!

PocketLab Voyager: How to Discover an Exoplanet

Submitted by Rich on Thu, 07/13/2017 - 00:53

Over the past twenty years, scientists have discovered hundreds of what are known as exoplanets—planets that orbit stars outside of our own solar system.   Different groups of scientists worldwide have used a variety of methods to detect these planets.  In this lesson we will investigate a method that has been quite fruitful in finding exoplanets as a result of the Kepler Mission, launched by NASA in 2009.  Another similar mission is CoRoT, led by the French Space Agency.  These missions identify exoplanets by a method called transit, in which the b

Grade Level

PocketLab on an Oscillating Cart

Submitted by Rich on Wed, 06/28/2017 - 00:57

An oscillating cart with a PocketLab provides an interesting way to study Newton's Second Law of Motion as well as some principles of damped harmonic motion.  The apparatus setup is shown in the figure below.  The small dynamics cart that can quickly be made from parts included in the PocketLab Maker Kit is shown in its equilibrium position.  Rubber bands are attached to each side of the cart and to two ring stands weighted down with some heavy books.  It is best to use rubber bands that provide as small Newton/meter as possible.  PocketLab is attached to the cart with its x-axis parallel t

Subject

Arms of a Spinning Figure Skater

Submitted by PocketLab on Fri, 06/02/2017 - 18:52

Exploration

When a figure skater spins he/she uses the positioning of his/her arms to control the speed of the spin/ angular velocity. The angular momentum of the skater is always conserved, no matter the positioning of the arms, and can be represented by the equation L = Iw, where L is angular momentum, I is moment of inertia and w is angular velocity. The moment of inertia is an object’s resistance to change in angular velocity and is related to the distribution of the object’s mass.

Objective

Grade Level

Angular Rotation Game

Submitted by PocketLab on Fri, 06/02/2017 - 18:43

Exploration

Angular velocity is the rate of rotation of an object along a specific axes. For example, the blades of a ceiling fan rotate around the fan’s central axis. Angular velocity is often measured in the number of degrees the object rotates every second (°/sec) or the number of complete revolutions every minute (RPM). The PocketLab’s gyroscope measures the angular velocity of the PocketLab about the x-, y-, and z-axis.

Objective

Intro to Angular Velocity

Submitted by PocketLab on Fri, 06/02/2017 - 18:24

Exploration

We have previously learned that velocity is an object’s rate of change in displacement. Velocity is often measured as meters/second. Angular velocity however, measures the rate of change in the displacement of an object as it moves around a central point.

Grade Level

Pressure and Volume with a Syringe

Submitted by PocketLab on Fri, 06/02/2017 - 18:11

Exploration 

Explore air pressure and how it works. In a sealed syringe, as the plunger moves back and forth, the volume of air in the syringe changes. With a large enough syringe, a PocketLab can be placed inside to measure the change in pressure as the the volume changes.

Objective

In this experiment, students will:
1. Determine the relationship between air pressure and volume using a syringe.
2. Explore what is happening to the air molecules when there is a greater or less air pressure.

Grade Level

Ceiling Fan in Winter

Submitted by PocketLab on Fri, 06/02/2017 - 18:08

Exploration

When it is cold outside, it is often thought that fans aren’t needed. However, it may be that a fan can bring warm air near the ceiling down to floor level, increasing comfort without raising the thermostat. Energy could therefore be saved.

Objective

In this experiment, students will:
1) Determine how a ceiling fan affects the temperature in a room, both near the floor and near the ceiling.

Download PDF for complete lab activity

Saving Energy with Curtains

Submitted by PocketLab on Fri, 06/02/2017 - 18:04

Exploration

Does closing blinds or curtains save energy? Often the blinds or curtains in a room are left open when it is cold outside, even when no one is using the room. Would closing them save energy?

Objective

In this experiment, students will:
1. Determine how to use curtains to save energy when it is cold outside.

Download PDF for complete lab activity

What is temperature?

Submitted by PocketLab on Fri, 06/02/2017 - 18:02

Exploration

What does it mean to change temperature? What is temperature? We know what it means to be hot or cold, but what does it mean when you measure the temperature of an item?

Objective

In this experiment, students will:
1. Understand how the temperature of the water is related to the movement (kinetic energy) of the water molecules.
2. Use observations to describe the principle of thermal expansion.

Download PDF for complete lab activity