Skip to main content

Physics

Relative Velocity Lab: PocketLab/Ozobot/LEGO

Submitted by Rich on Sat, 06/30/2018 - 19:32

Introduction to Relative Velocity

Airplanes can experience head winds or tail winds that affect their flight time.  Similarly, motorboats on a river experience ground velocities that are dependent on whether they are traveling upstream or downstream.  Both of these phenomena are associated with a physics concept known as relative velocity--the main topic of this lab.

Grade Level

Voyager Rides an RC Car for Summertime Fun

Submitted by Rich on Wed, 06/20/2018 - 18:18

RC Car Fun!!!

Here is a fun summertime activity!  Race an RC car with PocketLab Voyager. Challenge your friends to see who can negotiate a series of cones in the shortest amount of time without hitting any of the cones.  Start and end times are obtained by Voyager's magnetometer as the RC car passes by magnets.  

PocketLab/Phyphox Damped Lissajous Figures

Submitted by Rich on Mon, 06/11/2018 - 20:33

Lissajous Introduction

Lissajous patterns have fascinated physics students for decades.  They are commonly observed on oscilloscopes by applying simple harmonic functions with different frequencies to the vertical and horizontal inputs.  Three examples are shown in Figure 1.  From left to right, the frequency ratios are 1:2, 2:3, and 3:4.  These Lissajous patterns were created by use of the parametric equation section of The Grapher software written by the author of this lesson.  You are welcome to use this softwa

Subject
Grade Level

Science Lab: Helmholtz Coils Magnetic Field

Submitted by Rich on Sat, 05/19/2018 - 18:43

Helmholtz Coils

These coils come in pairs with the same number of turns of wire on each of the two coils. In "true Helmholtz" configuration: (1) the coils are wired in series with identical currents in the same direction in each coil, and (2) the coils are placed a distance apart that is equal to the radius of each coil. When in this configuration, they produce a very uniform magnetic field that is directed along their common central axis.

Subject
Grade Level

The Magnetic Field Around a Long Current Carrying Wire

Submitted by Rich on Mon, 05/14/2018 - 15:36

Magnetic Fields from Electric Currents

One of the classes of problems dealing with magnetic fields concerns the production of a magnetic field by a current-carrying conductor or by moving charges.  It was Oersted who discovered back in the early 1800's that currents produce magnetic effects. The quantitative relationship between the magnetic field strength and the current was later embodied in Ampere's Law, an extension of which made by Maxwell is one of the four basic equations of electromagnetism.

Subject
Grade Level

Periodic Motion of a Pair of Physics Carts: Experiment and Theory

Submitted by Rich on Thu, 05/10/2018 - 01:54

A Physics Challenge

In this lesson, AP and college students are challenged to derive equations for the periods of two fundamental modes of oscillation of a pair of coupled physics carts.  Derivation will involve Hooke's law, Newton's Second Law of Motion, and principles of simple harmonic motion.  Theory is then compared to experimental results obtained from PocketLab Voyager rangefinder data using Phyphox software.

Subject
Grade Level

Linear Motion - Match the Graph Activity

Submitted by PocketLab on Mon, 05/07/2018 - 21:52

Lab Activity: Understanding Linear Motion - Match the Graph Activity

Introduction

In the PocketLab activity Modeling Linear Motion - Position, Velocity versus Time, we learned how graphs can be used to model an object’s motion. In that activity, a cart was pushed up a ramp and PocketLab’s rangefinder measured its change in position and velocity vs. time as it traveled up the ramp, changed direction and came down the ramp. The graphs modeled the cart’s direction of movement and speed. In this activity, we will take the concept further.

Grade Level

Magnetic Field on a Current Loop's Axis

Submitted by Rich on Wed, 05/02/2018 - 17:13

Introduction

In this lesson students will find that a current-carrying loop can be regarded as a dipole, as it generates a magnetic field for points on its axis.  Students use PocketLab Voyager and Phyphox software to compare experiment and theory for the magnetic field on the axis of a current loop.  A similar experiment not making use of Phyphox can be found by clicking this link.  An experiment making use of a magnet, instead of a

Subject
Grade Level

Modeling Position, Velocity vs. Time

Submitted by PocketLab on Tue, 05/01/2018 - 19:16

Lab Activity: Modeling Linear Motion with Position and Velocity vs. Time Graphs

Introduction:

This lab activity helps in understanding how measurements of an object's motion can be modeled in position and velocity vs. time graphs. Velocity is a vector measurement that gives an object’s speed and direction of movement. If a cart is pushed up a ramp, it will experience many changes in velocity that can be observed and measured.

Grade Level

Isaac Newton and the 3rd Law of Motion

Submitted by Rich on Mon, 04/30/2018 - 14:37

Isaac Newton

Isaac Newton is well-known for the apple that hit his head and the discovery of gravity.  His three Laws of Motion, however, are among the most famous laws of physics.  In this lesson, we are especially interested in Newton’s Third Law of Motion—all forces between two objects are equal in magnitude and opposite in direction.  We will be studying collisions between two identical carts that are bouncing back-and-forth, much like a Newton’s cradle with just two steel balls.  Repelling magnets attached to the front bumpers of each of the carts al

Subject
Grade Level