Skip to main content

High School Physics

Prepare your students for real-world problem solving and open-ended lab experiments. Experienced educators and curriculum specialists have developed each of these lessons, and we have tested them in real classrooms. PocketLab physics lessons cover introductory and advanced topics from one-dimensional motion to electricity and magnetism to simple harmonic motion. Browse all the high school and AP-level physics lessons below or use the filters to search for specific content.

Filter by:

Crash Cushioning Lab - NGSS Based

Submitted by Rich on Thu, 12/06/2018 - 16:09

Introduction to Crash Cushioning

In addition to automobile features that promote road safety, there has been and continues to be a great deal of work on highway features that save lives.  An earlier lab entitled Crash Cushion Investigation, submitted by PocketLab, makes use of the PocketLab HotRod to investigate crash cushioning similar to that shown in Figure 1.    

Grade Level

Terminal Velocity vs Area of a Falling Object

Submitted by Rich on Tue, 12/04/2018 - 00:22

Terminal Velocity Introduction

The effect of mass on the terminal velocity of an object falling in air is commonly done using basket coffee filters.  But how could we study the effect of area on the terminal velocity of a falling object?  One way to do this is to use PocketLab Voyager and its range finder along with a single piece of cardstock as the object to be dropped.

Grade Level

Energy Conservation with a Mini HotRod

Submitted by Rich on Thu, 11/29/2018 - 22:16


What can you do with a PocketLab Mini HotRod, Voyager, five pieces of HotWheels track, and a half-dozen wood blocks about the size of Jenga blocks?  How about an experiment in energy conservation!  Add CloudLab and you have an environment for your students/lab groups to perform, analyze, document and save their PocketLab lab reports.

Grade Level

Hysteresis of a Tactile Sensor

Submitted by Rich on Mon, 07/30/2018 - 15:38

What is hysteresis?

Hysteresis can be defined as a lag time in the response of a system to forces placed on the system.  A common way used in physics classes to observe hysteresis is by loading and then unloading weights from a suspended rubber band, while observing the extension of the rubber band.  Students find that the rubber band does not Obey Hooke's law.  They also observe that the amount of stretch of the rubber band is different when unloading than when loading.

Grade Level

3D Printed Pendulum for Simple Harmonic Motion

Submitted by clifton on Mon, 07/09/2018 - 19:37

This 3D printed model demonstrates the physics of a simple pendulum that consists of a mass, m, hanging from an arm of length, L, and fixed at a pivot point, P. You can move the mass along the length of the arm to change the center of mass of the pendulum. If you displace the pendulum from equilibrium to an initial angle, θ, and release, the motion will be regular and repeat. This is an example of periodic motion also called simple harmonic motion.

Grade Level

Relative Velocity Lab: PocketLab/Ozobot/LEGO

Submitted by Rich on Sat, 06/30/2018 - 19:32

Introduction to Relative Velocity

Airplanes can experience head winds or tail winds that affect their flight time.  Similarly, motorboats on a river experience ground velocities that are dependent on whether they are traveling upstream or downstream.  Both of these phenomena are associated with a physics concept known as relative velocity--the main topic of this lab.

Grade Level

PocketLab/Phyphox Damped Lissajous Figures

Submitted by Rich on Mon, 06/11/2018 - 20:33

Lissajous Introduction

Lissajous patterns have fascinated physics students for decades.  They are commonly observed on oscilloscopes by applying simple harmonic functions with different frequencies to the vertical and horizontal inputs.  Three examples are shown in Figure 1.  From left to right, the frequency ratios are 1:2, 2:3, and 3:4.  These Lissajous patterns were created by use of the parametric equation section of The Grapher software written by the author of this lesson.  You are welcome to use this softwa

Grade Level

Science Lab: Helmholtz Coils Magnetic Field

Submitted by Rich on Sat, 05/19/2018 - 18:43

Helmholtz Coils

These coils come in pairs with the same number of turns of wire on each of the two coils. In "true Helmholtz" configuration: (1) the coils are wired in series with identical currents in the same direction in each coil, and (2) the coils are placed a distance apart that is equal to the radius of each coil. When in this configuration, they produce a very uniform magnetic field that is directed along their common central axis.

Grade Level

The Magnetic Field Around a Long Current Carrying Wire

Submitted by Rich on Mon, 05/14/2018 - 15:36

Magnetic Fields from Electric Currents

One of the classes of problems dealing with magnetic fields concerns the production of a magnetic field by a current-carrying conductor or by moving charges.  It was Oersted who discovered back in the early 1800's that currents produce magnetic effects. The quantitative relationship between the magnetic field strength and the current was later embodied in Ampere's Law, an extension of which made by Maxwell is one of the four basic equations of electromagnetism.

Grade Level