Skip to main content

Middle School Science

You can make experiments the most fun and engaging part of your science class. Experienced educators and curriculum specialists have developed each of these lessons, and we have tested them in real classrooms. PocketLab middle school lessons span across all the Next Generation Science Standard (NGSS) disciplines. Browse all the middle school lessons below or use the filters to search for specific content.

Filter by:

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Ideal Gas Law Verified in a Steel Balls Lab

Profile picture for user Rich
Submitted by Rich on Tue, 03/05/2019 - 22:18

Introduction to the Ideal Gas Law

The ideal gas law is commonly seen in the form PV = nRT, where P is the pressure, V is the volume, T is the absolute temperature, n is the amount of the gas in moles, and R is the ideal gas constant.  It is a composite form of Boyle's, Charles's, Avogadro's, and Gay Lussac's laws.  This law helps to explain how many things work, including bicycle pumps, hot air balloons, pressure cookers, and steam engines, just to mention a few.

Ideal Gas Law Verified in a Steel Balls Lab

Profile picture for user Rich
Submitted by Rich on Tue, 03/05/2019 - 22:18

Introduction to the Ideal Gas Law

The ideal gas law is commonly seen in the form PV = nRT, where P is the pressure, V is the volume, T is the absolute temperature, n is the amount of the gas in moles, and R is the ideal gas constant.  It is a composite form of Boyle's, Charles's, Avogadro's, and Gay Lussac's laws.  This law helps to explain how many things work, including bicycle pumps, hot air balloons, pressure cookers, and steam engines, just to mention a few.

Thermal Energy Particle Motion Experiment

Profile picture for user PocketLab
Submitted by PocketLab on Sat, 02/09/2019 - 00:28

How does adding thermal energy effect the particle motion of a gas? 

Thermal Energy Examples

Matter makes up everything around us. The air we breathe, the water we drink, the chair we are sitting on, the cells in our body, it is all made up of matter. Matter can exist in different states: Take water for example, it can exist as a solid (an ice cube), liquid (water in a cup for drinking), and gas  (vapor rising from a boiling pot of water). In all three states, water is always made of the same molecules, H20, and the difference is the amount of thermal energy.

Grade Level

Thermal Energy Particle Motion Experiment

Profile picture for user PocketLab
Submitted by PocketLab on Sat, 02/09/2019 - 00:28

How does adding thermal energy effect the particle motion of a gas? 

Thermal Energy Examples

Matter makes up everything around us. The air we breathe, the water we drink, the chair we are sitting on, the cells in our body, it is all made up of matter. Matter can exist in different states: Take water for example, it can exist as a solid (an ice cube), liquid (water in a cup for drinking), and gas  (vapor rising from a boiling pot of water). In all three states, water is always made of the same molecules, H20, and the difference is the amount of thermal energy.

Grade Level

How to teach NGSS MS-PS2-2: Newton's Second Law

Profile picture for user PocketLab
Submitted by PocketLab on Fri, 02/08/2019 - 18:43

Using a Half-Atwood Machine for Newton's Second Law

The Half-Atwood Machine consists of a cart and a weight connected by a string. It can be a perfect tool for tackling NGSS MS-PS2-2, which is centered around planning an investigation into Newton’s Second Law. Specifically, the standard says: 

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

How to teach NGSS MS-PS2-2: Newton's Second Law

Profile picture for user PocketLab
Submitted by PocketLab on Fri, 02/08/2019 - 18:43

Using a Half-Atwood Machine for Newton's Second Law

The Half-Atwood Machine consists of a cart and a weight connected by a string. It can be a perfect tool for tackling NGSS MS-PS2-2, which is centered around planning an investigation into Newton’s Second Law. Specifically, the standard says: 

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.