Wheel Radius PocketLab Voyager Determine the radius of a wheel on a cart by the use of two Voyagers: one with rangefinder and the other with gyroscope. Voyager A is the gyroscope and is the first device that is being scanned. Voyager B is the rangefinder and is the second device being scanned. Be sure to select them in that order: gyro first and rangefinder second. https://www.thepocketlab.com/support/lesson/two-voyagers-connected-single-device-phyphox-experiment-determine-carts-wheel-radius iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAgAElEQVR4Xu1dLZQUybKO61gHjpEjWQcO5FwHDhwj5zrWgVsk1y1ucRc5OHCLeyMHB26RI8GBY9y+E1Vd3VlZERlfZGZ1ZQ/d59z3dneyqjIj4//3X//8fvgP/UJEP6j/7f95D4c9Dqxx4F//vDj8Z08ce8awxwEZB/61lyB76bnXHHQc6Alk+EGi9RrRj0tDDQnXeNdrm0Xe0xqyI3vew6on0DZhNVax4I22hojb3A9ykdvcT8vf2nFYEdFYxYIkSHghOw4A93lLkPFngFWtM9Z6T8F9rRxWGxVLQpbRf0M2XWtNwcFmQXrtXMh5S1TGkvfvCgyRfSJwQNYg31qtWeFRoQRBPlh54xNX9NzvR85Ya81VOkstmJQwmMw9BEw2LUGQuEgRx14KIbb5XeRbtdbMgUzI3jIRcTZmV2HPogSpRhAVNojsZb/mJwvwbgmvqkoQBEmLpEwt7lTrPVu6JASui675OeBQ0QapBTDve2oZ0LXeU4sQkfd4YbVNFayFvZV7XBUbRDhckRRAgFULQUu+hSBlyZpwb8g+yy+4PEru3WcJfLzPInsrwys81USMtiMb9B56F9eXXIL32V2Hufe8y+LDJpJuSQjr74vqw8sCsZxLL7V/L7HNvX4pOOjfnSkXq72Dbi9b1YtEVwlW3rN7128fVriKBUkQr/hcCkA/23cRxPLeHfLOEhvKe0fz7H9H60EQ4JUYxHN4e7wINff6eRBqe5K65I4Q/OnfX1mCIBwD2ZwXuZF3zo1wJe/37t+7vmRvP9uzAWy7bF53RaH3cpD1yJpdvKha56r1npZhiJwRWVMiWVbPDubEL7NKkJYvo9bejAvjIiC6RnTtBtH1m0QHh0TXDohu3CC6dpPo2i9Ev1wnusbr+FbC3w+iy0uiH9+JLr/1//ztC9H3C6LLL0Rf+P9z4RqvsQrYSs5bgpSIRtHC3oI9ROGMyItVopfWAmQJwEqedexfKw1gpD+8Q3T9FtEB/48JgonheoT8lf71ckU83y6Ivn7uiebinIj/+6xEU4FLb6U4z3GnYZhilIsVqlhbiWVkbhreG/J+ZI3B/Vg6XD8kunWP6OAu0cGvvZRo4ff9K9G3v4k+f+gJhqWOSDBeOJQwoJJnF9jn1akHKQG889kb14kO7hHdOur/N5dkqE1kLFE+nxFd8P8+En37egXaO3kdOYbUU8IYQS7W6oNQvMOJWOo7Ec5QovYhOrCxByaKQyaI+0SH91b2Qm0M3uL72G75ck706d2GWLLqMkrurhb+eN+j7FlMo5LcvBBxIIDxbry19Sv16c4x0W2WFI2oTrXpiFUxVsE+nvY2DKthEA54bRAEZ5A1M+KJYlcWVBQuIXFmBNBgNN5+SHTnEdHN27XRse33ff1E9PEt0ac3fRGW2aNg7rto4P2TriawIay7xbafuFeB89y4SXT7EdG9k92xK+YiN7ZXzk+JPrzuXcxBTECOknvhP/f6uoRVIEGioArstisxrrzANYB145Do3mOi28e7b1tUJ5hLog/viM7/7I36LDulLrIusQch1cQKfs1x6FqGuGCUS6pCRxgPV4QxU4yiOsIu9EI26j+dEn1808dZcrSMIrtmDnzD3+lPNdmKpEAOAEiT2DvBUeujE6LbrEpx9Hr/gyEwEMr5K6Jv33VCaZoYAJyJ9j9VsawDWn9vjcMM+/31PtH95+0E82DMbGwh2yhnf2yM+fi+Ey7TPOnjR+qNrVTyrOTmrXK4xrxbHMy794zo7uPGMG3Ht8NxlPcviIjTWgKvF9SEGolPVdIiChm60Lwa2RiwRiS2cop2caHDvdSYlQxZmrx/TvTxfWUjfst4khgeFbX9ETaWS4HQczMBgq736hTHNPa/+SEwSJPQLZxUtWd0ymR9V2f480gQt5itEJkdCPLwNtGDF0Q3b82PGPsvbCDACZFvnxFdfNIN+Nbs08l+poQLNo5zcvosQDi/IUko9lDde7r3UC1JuO//S3T+ujKRlOBGgbRaR9I7hEYCeGCMpCg5UZAmlrrG7tuHz4lu7VWqJWlj/W3OHH7/LO0OnuAcYNeO8KAA8U182gTBK9SkBxtFJEfuIbVDcZrI8eu9StUEZQSb4OTH0xMlCu8lhi2uj5xL/kBhKonNoszwEpG14RrJK3Z4i+jRn33h0v7XHgQ4W/jtU6KvH2buQl+igqU1lnIJIiGuJCXMpDeDS8QExTUaD//c2xvtkcV4R+wKfveM6O8zJfHRi9ze9ZkOoBW+1ZUgKRUrqXOCts0A+jsPiR7+0Tpq7PcXQoCJ5OO7wnqTGVUtRaMplyBeVSl3/fAcp6Tff9p3C9n/dgsCHFQ8f1ORSCpJk7UWJLl53X2xZqRiSwLtiWO3CELaLeQGRjyqCB46CChPgtRypVV4z544dp84hhMMkgTxematcRBG+H6BSDK6u1em3AkAhMN1Ngcnxu3VqitDJWyTfH43s3cLwdV0dex0PkiujZBF6UBW569HRI//d2XwYn+QAAJvfiP6+z1Q1utEdChQjeUdgqkmc2wQcOtyh8KTt3tX7pWlqkui18eb/C3RWEbUJWQNgG9xVu+6N6/G/ZeSJrwfjpCfvNsXOF1Z4lgdjIOJrx8SXX6N6kpqMWXgPWvCnKpbaTev9CCUKgJsKhU45Lwwlhz7jNyrTh79+TgthSXJUHwVnnpbTHrIRYzwctpZsZMmVlVgiUiLcrckI52DgNzJcP/7eSDw+T3R6W9Oe6QEDxUmHnm1dAlSW1JI7jSJO3Tu3N9/HsTYn3QDgbOXRGevKgYSASdQnO8X/buealLslUpQqOZ75mKnk9Or687t5nl8J/oSzPngDiHD/A+e9TH8uJaeRydwb2BOxuS5IjxOoZs3coXd3a8f4UVXtZl4rParRjpMHEjE03CnhZ6LJ39drczcrlH0p77/LXdV74bfBLM7NF1bkirD5bHzggmG55Ac3L4aDbXD8zKMXj0a2yOpDPIkrjpUMEWS+BvHwcQDutWGjT3642rUkPMFc8EQZ69aad6aeEcM0+EeWKJwH2GOF916cDW8flzjzuW7GhxM55HDSZTC57wZhfU+vgbArgcDh/kbYZd09BIlbx7ChKRaGX6O1VTuSs9Ojl1WxYbs39BpNFLNHdIBgWe8ZvXvmdm8yObAFPZdjnewD5+J4sNp3+hZIgqDQ3WPCLqv2mE9tT5UVdh24Z7DTCytTL6SVEftvzHTeXkkq1rZtUUI3m7Kbfsx0Etk84bcjzuQ7GJTN3ZLMpfTZmqgl1hDzRIiwKPugkfPdxPGPIrh7fOehFLeJkQltdJP8rJ5K6lTYUOIkMuy7swBwV38sfR4dWQPy0TEe66alVLj1u/c8aCr5NUyjXaHpAhxT3hvoQRxbiRGhN/+2u1o+Yc3RH89Tw+bQbgbQkTaGq0H2XDxPN7hPmdC7+ivi7KzV4vHXQdnqNZ7baxSxdLKYYNkEoN2sbtSNju01+TEyaMnEZZd9i7JL5+nKoBkK0xgIWUsOOCcUuP4bzw67sn76VAgVg8/ve9LCHZhEOm6EtHZQcfLeIS4yjL1INzHii+udeORuwS+e9K3rmGj90TY88WHVR7RinakNJ21KqQgv/ciUZ1csu+Y4JmoebY6O0geviQ6vNu2eBkMdmjilTN6btg203qQDvhWLpbXNoko/8FTorsxN27sjjjl4cOrjY3B29Ok3pv/jLt2xARhqVnW3xHJE685uEXEgdf4F6dz8F3zXUykY4P3wXtHmEkuPNf3tsHvjGxeJHqe6DXEXEsS+63cB0e/WaRL1W4M+Mdv+1hD+Ouivw/GHi3Yi+VQqUTJITAzXscpO7FkGBwLE32e4yf3+04xzcZOLnu375AWnyIUAdHhoaSRcEjPKHRTIiBZHvxOdPekFXIY74NFOXcDTDVg7vLFBM+b1owA4XjwGjC2dIeR/c8pjIcKPk1FY68id6ls1S7hwaJ//VeXIjmaTypav87FMt1mAOIjxMR6/JPzNrlUSBwpvZSvR0qLiQNbqATR1CeYaKIiH62WhomevUHWXbNqxkTSon3I0v3VvVU+24r+S+MjkrQJYK9IkJlsENZzj7inVWM/Rm4u2GFvVAwwCdFZTXx6Ns06lty+OYiOMBsN0Xn+4qRcICpttd7PRMIqWouShG1DtkUsQg/jQBzM1e7BeE+GDVIgTZ5/bA/osVqV0vPDvzGhp9y+qB5ci4BYcnDiIhNujNhD8l/4LSuOwJOAn3A/gMamAHeS+p6ewSDdXw5xrAjHDhTWUhV4NEFr7UJZZJ+umgbE57RiDIyMT86mqgi7fd8cb7e+eiDG4z+nlZidW/d+76pOqiOCfcP21jFLksbqTzx9tSxpqdljq6CkUnI7RBel8ljNUEzUffAmuxrzyPuztKYVZowagJogF6/XspDf/UbEwbgw8ltLUmjv0YrNBueBF1GG9Twd+LFg8C95d110/UG/g8R8QTVdPqV+RZLVVrGyJUiwec0nvySQY10WQiDBNku5U8NExmw4Im7ga0SP2a0bMaAhTSOlgyOEK6qTS14e9Q4Ha9xb6mygCmyrWEkAApfHzz96QXS7oTHMDFhWg4Z4wIg4QFfqABetdxcbkl2gUchERZBSJVhhf6pbdxXA7L7nkPzS/joCbCjivi6qMjSXEgmzHsEGcc9M47y1eg8ONL16uJl8BHKSEb+M4XVfqIbsdP+j6RiyXFirzylpOxdnRK//U68BQnP3uKoX0SbrimoUwNAjOEcSxP+CpA7IWKVxt6Uk9KhSLZ3JibsSr6e9R9nqVbpvbLe/Lk1EcJ2/+ndfAy9y0Mx7bs0eSfX3LdV81l6s3w//MY0ZRCWYiPHVJRz/j+gWV4Y18Bt6L3kMcpTji/EH6lNQ4mxfSd2x1DxpH+yKfcr5VpGXyYo4T+7ToX5JnrKlrpZr/08VKQndm5Y2tfnvCRsEAVpC/2OgNRU551yeB0SXAleFJvwm8ssG5iB1ZUENZZgJBftQ3bqcs8TdUwLMteIe6Pe7XDqOtTTg+u0i66zGfu0PigYH0bMmU00cL5mI8WGjLalXg9cKOZfFzbV3aCoIu30/Bl3Mi8X/qpNJ10Ms+kkxAiNa7NIgUmrdEpIk7hAv2pSZKuVoTvpERco0ykMgtdLKp8tivd83VkBEbwmQHwoqZecY4GDdqrEDsgdrjVSN+f1zX+sR18m7mYIVX1CCpEsQSNcb4LdIWmbirgDzsYqFABJZM3yoldSSkKtC+0c4jrKGux+e/DVVQbw5RBOGFXxPK6PtRgl82KBp7BywiE5VU6KAMb9Hs7m2TSSsSr644+zpC/TlXcGiznwQCfCtBAcH6TF0DrfiCy4kUgAtpfSzvszR3y8XY305RCjo25xvxRnRUY5UbLCG70KYQrzGlKINSZG1IwRhbAlbUpQg7MUacY5K4qkVDjNU0CFnFJEC7DE8er/i9g29aOp+jEvWiI+N1cmMjSjyDxGgw/XdSna2OhjUSTACI6kjQSTEasEdaNUPmMar4AZEYxqWGjTh8MBlauqb5taFpAKubkydMYo027aaVRoUTdypUVEIXJokyhlAnRpwc9ugGn9PSvNG1A2N06YkTPwMr2VbJB4C9JULlzjb91LvqKjtUYophf25pItG7IoUo7BU0hbSiNAeZal7VYjETlbULisF1K6g6HxZ4uCvD0YrpFoIhmiyYyGginLuEuqKlWyRcN+/3u0TEuPfkBmg2RyoxJOkzQhuCrPUSpC3ffsv/913aoHuGri71XvKatI1IuEGAEunSHOaxR//jgDmlIimCgYAWuL67jwtxSDmIOSfDxJIIWQfo2eyEG1NeLy3BsZWDLGmCUMvu3N9/IEFoBTHayE9mstfz54XzOFWAOsx5BmGXfM2IfKM7G+4A9WeeUTEKlsqY1W6J8s2se4+llYtNOIY7DBr74iKHayRJQiKBDGghhdLwbJti1yXegVIgpyOGcOZJYYRun1TurGW2uGxryyk0e5RIjwJNzRVcpt3Hjbws86bJJKxqg3OKLTykCLX4LP/W3ZSFCPfyzvjfq5FQHO4PkUVJlGe++7pZmIUd5zkHxvwrCLydCqe2RjX0mhltKj6NDLcwbu1nlk6KDz0Jgt7fnnuXIGdnKxoGnYJ3bZLUBQaB+wkN7GQx6Hfal0ZmZi9iX9hbCfFDUVNIHJGwCqHEVNZWmsYmGLnHXTciwE/XcVCqE+6gBY8WHNOSzXVz0SG828V6vLj7ojWPVnIYj1verdWTKSF6cRcAzNkKsCEn1avo0Ah4Oq0RG0L+miYk+RFAMu16X1fSFA1vHthUHD9boNjqnsGvVwIkdxUXNrb1Bz43oe5kNY9gSXIerKiqWYpevnS7X1U47eC2NXsC6QxWc2S1ffPiNhIj+vdrVkhqTu1GIPFGFuoEzE7uPjVy6mRjnCLVABtaRdvnN1pXWypKEae19qBlnBXpKsHTBAeJ0SC0TxduDFgds2PrmZNbZDY5Wd6RiKqXDr1oOtYwjURK+zzuDAtsZzDPPiZOZL64slLOXuXzoMQvMZ0pBZIJUzA+6w4PjphEwJnlW0QS73SXszPcVdxHkG81E+rO/dyUwB4clOH6EJIyeytAZ9U4zuLYHLURYugli6QG1L+kbvr1mjScPPfpzZIykuDEM7SXEQsTDKM0dSZU8xAk1Ih8s3p3RnNJXHaWDASaeqHANOl1WvOKvhT6WDvvcfVHerp7ikApqhv6cGcWt9WhPCTXMURbQ9hNys8VjMSudTWSjdZMze0RsTmrhMJygHNJQeGDrlpWcQvn9fpxQKAu3QUnVMOLj6OU8kZYIPHJ/zn0AsUp5LE0lL9e0I68TO3j/2BQI/6xWpF2FZosu/h7AbCh89NYKTcewwTriJdssWTNEHLcnEbxCRLEMRQlzgy/7elUw48yLVfe7UgMHgwizWBjbaQbtpgqlmC2vHsvM3pRFcLFfankSAwzA4Z5WM5bbNIAqfjIEnPj/LhvQTZI+9SEEhWFjoIJdCgnHEQIBVlL0GWQo/9d73Tpyyv7KSzomrgWVmtwd+XJpDYaNVsJStOkOUJEeB0xBN9Z2zTycGxb1/sUlPveXPgxqMgljbS/7hnwyK8WwMuthcr5EuI8V4jY7WEF3I+zqfXeqe9GPERRNDWpFzHw9/m7O4y9KYNZ4en9orcn/e+w/Va5WPJfXqeDd28mqHuZBR2LpYmVTTkWHrQindylAYwi8ugyKaNafNcvLZWihw7EQAf8WDEgfi7d6XBpjUOCr4jTDNC7hXQEtI2CIoE4bo5OSYCp5xUEwBQ3ac1eFhIOVewkBMWkZp0Ma0ECXw6khgZPq2kmqTOa91VdM9+CWJx1gcviO4uOG6NuQgjTiUOMiEMybCzCGyOWglPTTqiVqbgZZ1vCLgurT18ekP09nnPRmNmFqpcEJH0DilMgniAN0fmKiI5hjWhJ0Pk+g53XwoxvACv2fmDc7CYCXC3eOiyLScLGGW34LG0gybV2UQkGAsuRNgQTw0wo8tZAVmrvfYgeclayXAV3XkIoSRSpb3qJ6dl8Jz40kxn9vVz5Zy3SZpVemsZtdJdh3ihTbsquUvvs9J4PUnjsZhK8HelcRyQcyUiHRHNoU54AfUmnO7q0KM9urqlasYIx/9ew2DPrbcfYGghh3YuS81q6d5L1evgrHbrUY0QRuO9AlHVQtOG2NXrQQpRLSto8Dy8j2MhNToQdirkET4MyLo/j/qcIhKO9xz97mVlddeHTRtKiGQkQV4c/qNW35l6m6SCNNDxW20ihqhVlb07Awy1uhB21R5yD69r46xfJoTvX/qeWXFbIM0YzWUEouQE1cvh2aWHtXZtf+4RDXNgPGZBQhsAG8elUrojhOKPPVm6cRxz2Xt9AzZLNVjXUVQmnpF+zu1H30+H3qxLRJk4DoiurxrH8WUzcfDIuAdP+1HP4S81jMeyFZLwAFKJRFWNmSLXo8+YMWDJmqEXM3LfDqmZbhyH6NkSwJaOhfCe3hwT/f0hw8uDEAqyJmAckutbm9AaIwIb19yI73o0SoIlTzebrwYTSEgLBOFa6PA+aA2IM0IjcmEkRdoGQTw1khpW06VpcQ7t76OhMk6EzlVVJGTi/CS2PeLf2X+Jzl6PJZxkL/AKzTM4OCM8+/WsnZxH0STY9rjLOWcL/tTZ8JnEvzq7381rAZj/XqNBWimsu9Rn1klDFbCEULzPrtZLNfpdLTl3XoniGBq3Zpg+fkvEnDr8aend1h0hUiG1Jv7b0lWkvB9z1DaoPkZMCpMgodhKAne1iRY8WbzPoXfU3Aijvd/i/JKo1+DLxHF8OtXzpWZppQSAwGv4xs3bRCdvS9lZ+fNsc377OpbIKYYz6e0WMsDNP2/iICjHQIDHa540UFnIRjB3ITQbGnilA+LpUty6a105is9Y7li+HynXKbRlrHcg+jl6vwNMl+6DxnAZ1YEYd+l0/25ULNHVJwTZUO60tNtvDbiMmEF4Ri/CDOutmSAxHC1ux+/l0c/MeJJu30xiV8+ZeN+cPb88MiUega3dnySxDTsbc/OOPghcAK9vIXDE++D09w8vASmSCAZ25zfylUIYqUNvVsl00rtQzqbFU3gGO9dDmNLSOiciHRvq6N7d8UuiD6+mZ5dc3ikpK9yBMWFKMWwsrsp/5+muPOV16Z80BRaVgk5gdkdl5OfeULcfjk8eRsC9348ZlBSRz52wZKplCsHwHJiT92006ND6FKNmQ0JjsNv+aK5HjauGxNNKAwduJsfRZ5S7IuqGBvwuJsDTaKOgmTrs3ull4+/+qgxJZU8O18N4gp8wsUYu3qWrBwf2o9Whw+dKS8xAgsTSwplqIOnUSxfQrIH4lejl/bFb1ZKClh0ict5rvUcnno0+ahFqp1gnCXn4rug+Ztc221yr4CGCJBYcYh29eyf3G+bMgCh4uYS2EBbImXcGmAcRPPBIumXgSMZOC/GQYd+xLZJzHqsXb45b14Og4VruYsjEGBvs4Tk1IvZE3yWkW7rmJyTEUGpa6qLnzlfvAuMgAdfzcKVuXqHgdVmC03AzMc6CZV+51kZUOxuicnVnFbiq5GFBYBjCSDPqj4Tqzc7t+4Do8kJvXGERpcaJ+b8fHPa25ZJ5V2vNgM/K8Y/vG2hZZ7P+Ht1NJEEUEaSKLiOMz8+14O4dwMfimItqwpybESIq9kB3fjmQtK7o87h1rXeF30t5tzRDWVM7UMKMOXH47/f/mDogFmF4RKTFlEoYXXR2Q4IA4XnpAsOPcAUdzwxp5ffmN6K/3/e7sUQy+veumu7/piesMdzeumzV7fuIiOvznRxTbUzB+9CcA0vdrVVBGMMOZRCBKqZUFDoMSesCO4Nu4bHQ4QUOM8aHXlIWAo3+rkhYKXuZ3z84BgKAywa40yES23tS1xTudsKluaa9AWgNvP+aMxZrEFR3j0d9FF0r3tMkIUIopg3iCYxZH5R05RpAyn1H1z8JQR6gF5RWajpwN8l5gbqbTcJa7U8r5ZX2gDKEELnYZf34NRFPMG7lJxWNpdTR9XkcAV9KNW1AL8ciDkYG9rhIKd9LApsjr3+9LFNBtOGc3fzAB9N4hIWcktqHPMPPSVKsa/Bwf2PEIrlYklqy9OQoCU/C4GAKB3PVLFuCICkHoF+ZN8mejzg+sCSB8LdzOGwIcC1YJs1pT9lq5gUbXI/fzXUnlts3ycyiQOCw3zuN2ZB8hqHFKCKdEQaTWAPYICARpEZD86FaibyO7JFLotPj3phFJGEIyM6tK9hWgwfJuhiTYJTipNT0Xqk8l8/Fbt9wCpUkqSRO26XYv56WCi/N2KQxeyY8EYY/XSN4sRwEYSFBB/Thohto5iBdLBt5zPEZgRAiGdaIMQg2HFmlMeoSUuprzkWv9etVLEYqzz39j34+6ZtdIJLrT1Z18ksTxfB9KbUEsT08dxswIayiMLUB9MO8rqUI7EiSrIgEGYbJz2k2VY1B9hLxoATF6zSViMtzL86w+fF8PpYcMaG1QCRsO3L2ruXoQPHSYPJYJF37mPpyRQo1FVmPbjuUJCkuzn97/D+iw6PxC6x8K0utiV2So/VgERC/g39Sea6kt0vfbFVy8LlSjS7is8TZEqE24yCefAmSowrwxjQ9uQXuxERyeiLbJMP+arhUY4kwMTYdaq4kXbQuI1JGcfjtzuZ41UYSooQPamOGRCpUSvoChJIpQcDgkkREHHV+wkl2jem2ax33si/T/ShE27XuiFZHeURHFiWIkcqTkjqp4GXYXG3grCwRuXdwCzlWEnFIpcUAgvszCcbZI1hNOmKMI5sdDt6qLRJeDHOrTte93MRKUmkdnjkdkvj3wG90H5o6y83q2MsW1aUMAbY1cV3rG9PNPSquVEPIiVshcZ+kahsGClMLkctDVa5OT1a8LaVArP08J8O9e9p7pboyWqk7YjCTwrIzYjiK/w5EepH74DVaAuUp52l97s/08GVbEXJRegT9iJNnj3IHJ2uNhFMBh20JgkgPtMY6fFeLcRHtct4974dTTspoV6nlPIrAQn6TgTjsDuhOBkb0tu/vG/6Y8FlCcmlwi56q+B6gakxH/qDDK4vZIOiFhEljFpfjv7cYXfdIoaE7oqbyWDAYJjNZLksv/MP1LUbCPTBOed9qw1eUIFp391BHNTNCM6m3hZ6unssK14ZuXe2iEMQe3omszV0jlefmnnvbz3EQ9+sHrGNJUqUCEk8FRmXPB0Go1I0ggTrRQuOxnEvvmtI999V/d3BScp5Q3dpNJNf7AO3SvXOzYGzNHMxLH5mowwkPoh0HcV9I5JMOkUJCgl0x2DX75Pw10QfuYhLUJSAwK2E8yLNch3P3EdGdk92wM2L4DnU7XYm0UOmJwNi7RoArZoOED5a6zqTLbam5Qw6n48vk2vOPr3vvEILApmoFeLOk0l2u2bjzqHcqtBprQmA8VH6azg1NioDZByPcnnYStb1Y8WWbFyu0K0UouTgAJLEAAApMSURBVJUWQcjlpdZwDcbnv4j+PlvNMJfmdzgydS2GxH9nW+7mvT4PK/ZYlZ5nieetjGgUB1OMKn5HiKPBc2MVC+F8SJAq5wCsEnCE/Spc8HB+jv5+Oe9TVy4+ErFh35WIBsFHTQXVmArHLrizyM1fiQ7uEh3eazf6nUNc4WgIDR8RhmutiQlCEgS/cKDw98N/JoZjjY2ZolEQgVqvpxxAt/gMEwy3H+LUeh6x9u0L0SX/73ufiPfjR69vd//nWj+SjUez3eDxbIc9YcSzDFs8Z8metDaiCUMaVmm1MR4JXJ0WTGkiPUsqZHgZbp8Q3V94WmrJBe+fzYeANOvE4vSqpHDYIAnNaWqki4Tg0ZklL5aTUFqYcZh/zfsncyAQ9ixLMWNLdfKaCeF6MVDIKpaxSP+7P7elf5f1HHcOP22vhj3n4vfP2BDomlxwl5lgJF1KpXJLjUSOVvyd6N14d3cvZVrGvMUJWmqvb1/xfkUuBLrOK8dEnM+meJIwBu3QUlIjBSPppc8HsdyLMcF4bBR0rTaXL/cy9s+1BQF2TAyZxTFOaAwUYdTIGo0YI7wHJMgMWaZokh4fVKvga+uq97vJgUA8mVZUq5RZjggRjEyHRPGZWJ7bfzchQRwiS9ssJIWMqjl+tzZWIOdS9s+0AYGwr+4IkRMj4nJCB+FpM6QSIEEKCAVVpSR1LeYmu1I/0gb6tb2L3PqODk8yNBrL3nXFQUykztjgRMIAeUYS0Wglr22jw353IQSYOD69thtOe1UoCV9CgrKIRGHSvglT1kesv6uqmFFPEj63lyS7S3BWV5Vc/EHwymT8cmcUfzZvirK9ItDSDyWjbW+T7CaBpPoge9Qmr2RJGf4AYdn1IMkNOYt/pNiIxTU0dxx7t3gwT6ttanYTjevvml25TBw8tChlJCN45iUOj9RQ8KysN68lARS9zmwbqfqoI1Xs5m2iR692syCoPiq290YOAr59ok+6yuHu2yCSAP8yJAjYzEwkDoeBv6Z+Iw+MI+7H+7SU5qiD00e4S+UwyQtQZ0QJY2kYCMF4UlOSqSbIx7xrkOAPArzYvgmfYR2WuwLyPMT9b3kIdImHXK+/mj4LIXlBt05EPYP2II0/sLqaJA1vQCIgyG8FgFCi3LuBFyaOS6JuTvsrpfs6gC8QItd6jx3jy/RiOTcoqVsI0sfSBwEe529x+e5VqkxcGO2hz3Ml4Ntn+DCiJOO1Edffc1cZ8W2oX4madCcRpKSA928pdWqkWiUK9rlrYNwJEbrp/SI3BLoWSC8ClcooZ0CYYyNrNka6peYg3Dv2PiHIjAAiVeWY2hd3S3n4Yre7e7ixdYsPsJfq7EXfCV/zPCL3u6g0SUurwsZxYFljlgRJzHxwuQev9T1o99KkLuWw1GDi+LYyxBFm6GWyUtwMMcgna0A8Fd6dHuJZdCAAwYcrQwABcyKFI3C/KO7iuLdNygiFbY33L/vAn2RbujQRICevFg5a71G0FF2CWC9EKdniLChAS/YT7oE9XdyKc5ebqpWheN7T3Hnl/HTloYrbFhm90ERGOLch7ny/gs/zS5Ac3TRLWjicCl1bzhMiJpZ9qkqaYDhVhNurcgZuqE5pd4QyPPiOHfcKvxOvORn3xZJEZlKfc+h26OZnM9iEvXITtnvHRNxqaE8oEaFc9j2HmTissdYwE2xIpZI0G4G45/NiQSpRqgzS67d2itRwf5yuwkTCxPKzq16DKhVKDOguQZsTepdXanjXG+UVwR7HcZCQe0MHyURK5N1z6a3at4ezs7frzvHP13KIc6c+nhKxd2qYB4NK/dirWC19vQLie1RBQarIJbdVkDNTnLpcuIiUSfRESiEAR+SZUHa9S3rKwlh3pT/dRMBN1SORM6U6ZGZEdJiI8/AgULGiFyBcHlqDACf+diZxIcBCXMqjNddX8wnvEx1chUbRl0Sfz4k4ofDibGN4S4wJgadJUJlaBvxtBL8ERgrhbtjVRKV+w4UHfii7BgQGFHIRXmBGejXbKjxPnDuq75JkYUlxcU70iYnifJMSYqkfpkdqrgxc5C4rrAFwd2qkm0AxNgZ81Ew0K3pHJhFY34w9NYxcrIYd3OnHKB/eacfA5xqMi7+JeJrtl4/TBEJLjdU8iRaMqqjmFRAfZarAOrl5tUkkDvcuAlTze4mkxJwBo4grObUn7Uw3DokObxEd8ECbX/s55Dy+YC4XMscoeHzCl4t+9giPVeBZJJcXdteQ3Hsp1TRUAz6TsQFI3tFt0jmjE6VvwpQK1C0QTCkgvAiRA9RYyjAy8I+JhOeRHzCxHPbzPpho+L/zmo6AfulGf/D4kM3vRx+DuPzRzxAZ5ol0xMD//Uu/VPM6WchcCtOc511SphbRrN6TwYgLJ0xlikMvslZbjwAcACbCjVJrYsQKaSL1zxMCFOxDjShykBmBu/e9yDvdjBhw6qwJE8GBDV7rbl7PBVs6bRFQnK7c3G8hz6FSxXoXor7FMNWIIyQo67uIagmvyXDejPbnQ1TTbkUINeP76VwsFCEm6xJcOHmQBYCGABZZk2qpjyCuJFUQiZEiJOS721yDwHHuNc7z+ktuE52wO2YWX+pVJYiY06r6PkD0CFKIUnqu2JVXdU6kDM1tB3mlgmgD6fv3SRD05RZQnFRcRbx6VQcEaWvp+5JnR7t4bV+mAQoQ6pz3siZwwF7Yxj4s7Wj19wwJgnAXwND1IuBskqgC4nhUIfQcIjNCYB8FN6vC2fH9HBsWhU0uAXmeW61NZ/NqXBf50PqCHQiIvLdaIpw3tuI4ByKtrLOqf3fsw/qGZjuWImqKuN178t5TotYDZhYbGPslyHB4BLgeYHh1Sc+7YcA4OGTpO0uft86/dEBOus+l7ziDufpsEMtQNPXgTASEuOnCuq0X4U2dPBNWuftAGF4NyQLdZa2zg86DhMTP6M1r+b8RFQBZY32nFhAz32NxcBSZRFU0hA8CK2SNcM6iMzjh5iXcudajtt3aBuE56RCgFkgnQQ9TzP2QYORMCAbB3omMNd5Zm9PPpV0g9l64BoFNgHf5EiRGymxkrpEdjHBQZI0TEeMzL61j1+S6Ne9TJI4Z7sNCfuh+xh7YPCN9Vm5Qg2CciG4BVkO8OHpeE0Fz91RLmhZ9PwpgbouZwtIEwI/VnutIkCJgApsN31+Ts5UgdCtccYIUXs4sGbLed1hMzWMsO/GhCPcS+/LbIBYQtnQwj5isyVFQIq19YaixX/Rdy76qQDCe/XnWljC51LNVJcjA1bM2a7hnIWBVuMAkMTk4oOiVqsU8ap0T2E9tSe15n7l2ZjgEeFzRBkE2jayZM1XC+X3Lk5OtZtXaB4DoEIOxJEimly9kmJ59QFrCds7emA1icepaiFXpPUkv1owXmCWpPSpyJfgMiB7//7lUXw8Rqo6XcfzNMeXWAbSGOAAW48lEZtQuyUJoB7xhhDPUWWSfJUiIvH/JNYJqV0eC5IrSOQzQkgv0PDvK6xn7zjs4e94FI7iXkL1E5pEyzr1kwQT5xrxn/H/dbQnYTmONEAAAAABJRU5ErkJggg== d dRaw dCal tRaw t t2Raw zRaw z n n-1 tmax 0132 zRaw t2Raw 0132 dRaw tRaw t2Raw z t d dRaw 0.001 dCal dCal n n 1 n-1 0.02 n-1 tmax 0 tmax n tRaw tRaw dCal 2.2 t d zRaw 0.0610351 z t dCal z