Position Vs. Time Investigation

Submitted by lessemj on Wed, 06/28/2017 - 20:59

Hello All,

I'm an AP Calculus teacher, and I used the attached lab to introduce position vs. time graphs to my students. My school doesn't offer physics after freshmen year and historically students have struggled to translate graphs into the actual motion that they represent. This year, using PocketLab and some magnets, the students were able to create their own position vs. time graphs, and concept mastery has been significantly higher. I'm definitely planning on repeating this lab next year!

c is for Camping, and heat capacity

Submitted by montessorimichael on Wed, 06/28/2017 - 20:51

Students use warm soup (must be lower than 70°C since this is the upper limit of the pocketlab temperature sensor). To determine it's specific heat capacity and decide which is best to take on a camp so it is still warm when they go for lunch.  I tend to use this as a follow on project from investigating insulating materials so students can re use previous projects such as 'stubby holder' style devices which have kept drinks cool to reinforce ideas about heat transfer (and so that projects aren't wasted!). 

PocketLab on a Skier's Edge Machine

Submitted by Rich on Wed, 06/28/2017 - 04:00

The PocketLab is an ideal device for measuring user performance for a variety of exercise equipment.  One example of such equipment is the Skier's Edge, whose company was founded in 1987.  This machine was designed for non-impact lateral conditioning that simulates the experience of downhill skiing.  The photo below shows the skiing machine.  The skier stands on the two black platforms, holding poles and moves the carriage back-and-forth on the curved white tracks.

PocketLab Joins Ozobot to Study Position, Velocity and Acceleration Concepts

Submitted by Rich on Wed, 06/28/2017 - 03:51

Ozobot (ozobot.com) is a tiny one inch diameter line-traveling robot that can be used in conjunction with PocketLab to easily study the physics concepts of position, velocity, and acceleration and their time graphs.  PocketLab is simply taped to the top of an Ozobot using double-sided mounting tape.  In other words, Ozobot gives Pocket lab a ride.  The photo below shows this setup, with Ozobot following a 1/4" heavy black line drawn with a chisel tip marking pen.

A Momentum Conservation Experiment for an Inelastic Collision Between Two Carts

Submitted by Rich on Wed, 06/28/2017 - 03:36

Do you have two PocketLab Maker Kit carts, and do you have the free VelocityLab app?  Then you are all set to do some experiments in conservation of momentum with PocketLab!  This lab discusses how to setup and perform an inelastic collision in which one cart (A) is moving toward another cart (B) that is at rest.  When cart A hits cart B, they stick and move off together.  The photo below shows the two carts shortly before the collision would occur.  PocketLab is mounted on a front wheel of cart A.  Small pieces of wood are stuck to the carts and protrude further than the wheels.  Some thic

A Classic Conservation of Momentum Experiment with PocketLab

Submitted by Rich on Wed, 06/28/2017 - 03:26

A well-known conservation of momentum experiment that has been around for many years involves dropping a brick onto a horizontally moving cart.  With PocketLab and the VelocityLab app, your students can perform this experiment easily with the cart from the PocketLab Maker Kit and a small block of wood.  The snapshot below shows the setup with the author about to drop the block of wood onto the cart coming from the left.  A pair of rails, with inside separation just a little larger than the axle of the carts, was constructed with thin balsa wood sticks.  This is optional but does help to kee

Conservation of Momentum When Two Carts "Explode"

Submitted by Rich on Wed, 06/28/2017 - 03:14

Do you have two carts from the PocketLab Maker Kits?  Do you have two PocketLabs?  You probably have at least two students in your physics class with iPhones.  Do they have the VelocityLap app installed on their iPhones?  Then you have the major components for your students to investigate conservation of momentum when two carts on a track "explode".

PocketLab Investigation of Fuel Efficiency

Submitted by Rich on Wed, 06/28/2017 - 02:56

With gas prices as high as they are and having a growing concern for the environment, Americans today are becoming conscious about things they can do to improve fuel efficiency.  Many realize that driving at the posted speed limits promotes both safety and reduces the rate at which fuel is consumed.  With these things in mind, some have purchased hybrid vehicles including the Toyota Prius, all-electric vehicles such as the Nissan LEAF, or range-extending vehicles such as the Chevy Volt.  Those with EV's soon realize that they get more miles per charge if they avoid driving at excessively hi

The Inverse Cube Law for a Neodymium Dipole Magnet

Submitted by Rich on Wed, 06/28/2017 - 02:31

PocketLab makes is quite easy to investigate and verify the inverse cube law for the magnetic field of a neodymium magnet as a function of distance from the magnet.  All that is needed in addition to The PocketLab is a centimeter ruler, small neodymium magnet, a small block of wood and a little double stick tape.  The photo below shows how the neodymium magnet is taped to the block of wood with the magnet located at the 10 cm mark on the NSTA ruler.  The height of the center of the magnet is at about the height of the circuit board inside of PocketLab.  The X on the front face of PocketLab