High School

Intro to Angular Velocity

Submitted by PocketLab on Fri, 06/02/2017 - 18:24

Exploration

We have previously learned that velocity is an object’s rate of change in displacement. Velocity is often measured as meters/second. Angular velocity however, measures the rate of change in the displacement of an object as it moves around a central point.

Pressure and Volume with a Syringe

Submitted by PocketLab on Fri, 06/02/2017 - 18:11

Exploration 

Explore air pressure and how it works. In a sealed syringe, as the plunger moves back and forth, the volume of air in the syringe changes. With a large enough syringe, a PocketLab can be placed inside to measure the change in pressure as the the volume changes.

Objective

In this experiment, students will:
1. Determine the relationship between air pressure and volume using a syringe.
2. Explore what is happening to the air molecules when there is a greater or less air pressure.

Measuring Forced Vital Capacity with PocketLab Spirometer

Submitted by PocketLab on Fri, 06/02/2017 - 16:53

Exploration

A spirometer is an apparatus often used in the medical field to find the cause of shortness of breath. A spirometer can rule out lung diseases like asthma, bronchitis, and emphysema. A spirometer can measure forced vital capacity. Forced vital capacity is the amount of air exhaled during a forced breath. Explore what factors affect forced vital capacity.

Objective

Measuring Pressure Change from Chemical Reaction

Submitted by PocketLab on Fri, 06/02/2017 - 16:49

Exploration

After a change occurs, if the molecules of the chemicals involved do not change, it is only a physical change. Ice melting to water is an example of this. A change has occurred, but the H2 0 as ice, remains H2 0 as water. If however the molecules of the chemicals involved do change to form new chemicals, then a chemical change has occurred.

Pressure and Volume with a Syringe and Flask

Submitted by PocketLab on Fri, 06/02/2017 - 16:44

Exploration

Explore air pressure, temperature, and volume and how they work together. In a syringe sealed to an Erlenmeyer flask , when the syringe’s plunger moves back and forth, the volume of air in the syringe and f ask changes. Will the pressure also change if the temperature of the air sealed in the syringe and f ask changes? A PocketLab can be placed inside the Erlenmeyer f ask to measure the change in pressure as the the volume and temperature change. 

Objective

Natural Frequency of a Mass-Spring System

Submitted by PocketLab on Fri, 06/02/2017 - 16:41

Exploration

Explore principles of harmonic motion. An oscillating mass on a spring or the motion of a simple pendulum are examples of objects in simple harmonic motion. When an object is in simple harmonic motion, the restoring force is directly proportional to the displacement and will act in opposition to that displacement, allowing the object to oscillate back and forth.

Objective

PocketLab Bungee Jumper

Submitted by PocketLab on Fri, 06/02/2017 - 16:38

Exploration

A bungee jumper leaps from a tall structure and falls toward the ground. The bungee cord begins to stretch and transfers the kinetic energy of the fall into elastic potential energy, slowing the jumper to a stop.The cord then pulls him/her back up as the elastic potential energy turns back into kinetic energy. The jumper then oscillates up and down until their energy is completely dissipated.

Objective

Simple Pendulum Motion

Submitted by PocketLab on Fri, 06/02/2017 - 16:34

Exploration

A simple pendulum consists of a mass, m, hanging from a string of length, L, and fixed at a pivot point, P. When displaced from equilibrium and to an initial angle (amplitude, θ) and released, the motion will be regular and repeat. This is an example of periodic motion.

Objective

Properties of a Wave with Simple Harmonic Motion

Submitted by PocketLab on Thu, 06/01/2017 - 19:41

Exploration

Simple Harmonic Motion is a periodic or oscillating motion where the forces of the movement cause a particular motion to continually repeat. The back and forth of a pendulum, like in an old grandfather clock, the ticking of a classic metronome, or the up and down movement a bungee jumper can all be examples of harmonic motion.
Using PocketLab you can investigate how to mathematically model harmonic motion through two classic examples, a swinging pendulum and a mass-spring system.

Objective:

Magnetic Minesweeper

Submitted by PocketLab on Thu, 06/01/2017 - 19:37

Exploration

In the Magnetic Minesweeper Lab, you will recreate the classic computer game Minesweeper in real life! Using PocketLab’s magnetometer, you will try to discover hidden mines and mark their locations on a grid. You can do this lab with two people to create a Minesweeper competition. One partner hides mines in different grid locations while the other partner tries to locate the mines to not get blown up!

Objective