Physics

Two Voyagers Connected to a Single Device via Phyphox: A Conservation of Momentum Experiment

Submitted by Rich on Mon, 04/16/2018 - 21:15

In the study of collisions between two carts, it is desirable to collect position data for both carts.  This can be done with a pair of Voyagers, each connected to separate devices running the PocketLab app. Starting data collection on both Voyagers by simultaneously clicking data recording on both PocketLab apps is difficult.  One cannot view the data on a single device in real time, and analysis of data requires combining data from two separate devices.

Two Voyagers Connected to a Single Device via Phyphox: An Experiment to Determine a Cart’s Wheel Radius

Submitted by Rich on Thu, 04/12/2018 - 22:02

It would be nice if one could connect two (or more!) Voyagers to the same device—say to an Android device or an iOS device running an app that could display concurrent data collection from both Voyagers.  Such a capability is possible by the use of Phyphox (physical phone experiments), an app developed at the 2nd Institute of Physics of the RWTH Aachen University in Germany.  The author of this lesson has been working with a pre-release Android version of this app that supports BLE (Bluet

Internet of Things at Stanford University

Submitted by DaveBakker on Mon, 04/09/2018 - 17:47

What Internet of Things projects are Stanford students developing? Stanford ME220 "Introduction to Sensors" is an introduction to the variety of sensors that are used in engineering practice. Students in this class get a comprehensive overview of common practices with sensors and learn the direction in which sensor technologies are heading. 

PocketLab HotRod Ramp: A Study in Rotational and Translational Motion

Submitted by Rich on Mon, 03/26/2018 - 01:31

This project will get your physical science/physics students involved in a number of Next Generation Science Standards, particularly in the NGSS science and engineering practices.  This investigation provides a nice opportunity for the students to (1) suggest hypotheses, (2) design an experiment to test their hypotheses, (3) analyze and interpret their data, and (4) use principles of physics to explain their observations quantitatively.

PocketLab Voyager/Wonder Gears: An Experiment on Gear Ratios and Angular Velocity

Submitted by Rich on Mon, 03/12/2018 - 03:10

Gears date back many centuries and are extremely useful since they can change the direction imposed by a source of power, as well as torque and speed.  This lesson describes an experimental study of the relationship between gear ratio and angular velocity by using PocketLab Voyager and Wonder Gears.    Wonder Gears is listed for ages 3+, with this lesson heavily emphasizing the “+” part of the description—since this lesson is perfect for junior high students aged 12 through 14.  This is one of the many advantages of Po

Head-on Collision versus Crashing Into a Wall

Submitted by Rich on Sat, 02/24/2018 - 03:56

 

Let’s imagine two scenarios:

1.       Two identical vehicles, each of whose speedometers reads 50 mph, travel toward each other and experience a head-on collision.

2.       Another identical vehicle, traveling at 50 mph, hits an unmovable, unbreakable and impenetrable rock wall.

Which collision is more severe from the viewpoint of one of these vehicles?

A Lesson in Radioactivity and Half-Life: Voyager/Scratch Geiger Counter Simulation

Submitted by Rich on Tue, 02/20/2018 - 21:10

This lesson makes it possible for your students to study radioactive decay and half-life concepts without the need to purchase expensive radiation monitors and actual radioactive isotopes.  Scratch and Voyager work together to accomplish this via a simulation that matches that of true radioactive decay.  ScratchX is not required, but may be used.  The Scratch program provides the decay process.  With each decay of a simulated atom, the Scratch screen quickly flashes white and emits a beep sound similar to that of a typical Geiger counter.  Voyager’s light sensor records each of the decays a

Energy Conservation – Transferring Kinetic Energy to Thermal Energy

Submitted by PocketLab on Fri, 02/09/2018 - 20:33

Introduction:

The law of conservation of energy states that the total energy of an isolated system remains the same. Over time, all energy is conserved. Energy is neither created nor destroyed – instead it transfers from one form to another. Objects in motion have kinetic energy. Thermal energy is energy in a system due to its temperature.

Hot Wheels Racing with PocketLab

Submitted by PocketLab on Wed, 01/31/2018 - 18:45

Engage your students in engineering practices and classic force and motion and energy concepts in a fun and unique way. With a PocketLab attached to a Hot Wheels car and a track full of magnets, you'll be able to collect data on position, velocity, acceleration, and energy as your car zips up an over hills and around loops. Turn your students into theme park engineers and have them design "roller coaster" tracks, iterate on car designs for races, or teach basic concepts on position and velocity. This activity is sure to help engage your students in a meaningful way.