No Ice Skates, No Rink, No Talent: NO PROBLEM!

Submitted by Rich on Sat, 01/27/2018 - 21:55

Almost everyone enjoys watching the figure skating events in the Winter Olympic Games!  But only a select few worldwide with the required skills and God given talent have the opportunity to compete.  What about the rest of us?  We can’t even imagine how the Olympians manage to perform all of those fancy quad jumps and camel, layback, upright, and sit spins.  But we can sit in a chair, and with the right chair, we too can do a sit spin of sorts!  Add PocketLab and we can also learn some physics about conservation of angular momentum.

Six Shades (not fifty!) of Grey: PocketLab Voyager/Scratch Dice

Submitted by Rich on Tue, 01/16/2018 - 22:20

This is a programming project that capitalizes on PocketLab-Scratch Integration.  This project makes use of the Scratch random number block to simulate rolling an ordinary six-sided die.  The six random but equally likely outcomes are mapped to sprites of six different shades of gray.  Voyager’s light sensor is then used to determine the value of the die’s roll, mapping light sensor values to the corresponding sprite from six images of the face up side of the die.  A short action video of the author’s solution accompanies this lesson. 

CloudLab Curve Fit Feature Preview: Inverse Square Law of Light

Submitted by Rich on Fri, 01/12/2018 - 22:15

The ability to quickly match empirical data to well-known mathematical models is an essential feature in the analysis of experiments.  This technique is generally referred to as curve-fitting.  The up-and-coming, but not yet leased, CloudLab software from PocketLab provides an easy way to fit data to models including linear, quadratic, power, exponential, and logarithmic.  This curve-fitting can be done for any selected region of PocketLab data.  This lesson provides a sneak preview of this CloudLab featu

CloudLab Statistics Feature Preview: Determining Curve Radius

Submitted by Rich on Thu, 01/11/2018 - 20:35

Collection of angular velocity and acceleration sensor data is prone to seemingly random “noisy” variations, even when the associated motion appears to be smooth to the observer.  The easiest way to compensate for this variation is to compute the mean value for the duration of such a random variation.  The up-and-coming, but not yet leased, CloudLab software from PocketLab provides an easy way to compute means, standard deviations, and other statistics for a selected region of PocketLab data.

PocketLab Voyager Rides Anki OVERDRIVE Supercar

Submitted by Rich on Mon, 01/08/2018 - 21:07

People of all ages have enjoyed playing with toy race cars for many decades.  Anki OVERDRIVE is currently one of the most popular and technologically advanced race car sets available in the marketplace.  Why not attach Voyager to an Anki supercar and give your students a fun way to study angular velocity?!  Each student group can design there own racetrack and obtain a Voyager snapshot of angular velocity vs.

LED Flame Lamp: Random or Cyclical Illumination?

Submitted by Rich on Wed, 01/03/2018 - 19:00

Late in 2017 a handful of companies began selling LED flame lamps that do a great job of simulating an actual burning fire. The illumination is bright, has a color temperature of a warm orange flame, and the light produces negligible heat while running at under 5 watts of electric power. This light seems to be a great replacement for traditional gas lanterns, hurricane lamps, and oil lamps.  The simulated flame is unbelievably realistic in the flame light purchased by the author. No obvious pattern could be detected in the flickering LED flame by observing the light with the eye.

A Lesson on Calibration: Interfacing PocketLab Voyager with Modular Robotics Cubelets

Submitted by Rich on Tue, 12/26/2017 - 18:40

Sensor-based inquiry is a dominant force in today’s science education, with the calibration of sensors being essential for high-quality measurement.  Wikipedia® defines calibration as “the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy.”  In this lesson students will study the process of calibration:

Interfacing PocketLab Voyager with Modular Robotics Cubelets Maker Space

Submitted by Rich on Mon, 12/18/2017 - 20:39

The maker revolution has grown by leaps and bounds during the past four years. With dozens of robotic toys for learning and discovery now in the marketplace, it makes sense to give students opportunities for interfacing these robots with the investigative powers of PocketLab Voyager. This lesson describes an example project by which students interface Voyager with Modular Robotics Cubelets—robot blocks that magnetically connect to form an endless variety of robots. There are seventeen different blocks in three categories—sense, think, and act.

PocketLab Voyager Study of LIDAR Basics

Submitted by Rich on Thu, 12/14/2017 - 19:09

LIDAR—an acronym for Light Detection and Ranging—is a method for remote sensing to measure distances.  While LIDAR commonly uses reflected laser light to accomplish this, students can investigate LIDAR principles by using Voyager’s Gyroscope and IR Range Finder in conjunction with the PocketLab-Scratch integration.  PocketLab support has described a project in which Voyager was mounted to an RC BB-8 Star Wars toy to map a two dimensional image of a “room”.  In this lesson, the aut

Programming Exercise: Voyager Gyro Controlled Scratch Christmas Tree

Submitted by Rich on Thu, 12/07/2017 - 19:27

Here is a fun Holiday project that that will challenge your students’ skills in both the physics of a gyroscope and Scratch computer programming. With reference to Figure 1, all of the sprites shown are either from the sprite library or are created from the Paint new sprite option in Scratch. The challenge is to program the tree’s star to blink on and off by control of the x gyro, blink the blue light by control of the y gyro, and blink the big red light by control of the z gyro. All three lights should be on when the Scratch program starts running.