Skip to main content

High School

intelino / PocketLab: Velocity vs. Impulse to Stop

Profile picture for user Rich
Submitted by Rich on Sat, 08/17/2019 - 15:34

Introduction

While driving at 40 mph, you see a red stop light ahead.  You press your brakes for several seconds, gradually coming to a stop.  A little later on the same road at 40 mph, you approach another light, this time green.  While approaching this light, it suddenly changes to yellow.  You make a split-second decision to put on your brakes to avoid going through a red light.  With the brakes applied quite hard, you quickly stop, waking up your sleeping friend in the front passenger seat.

Subject
Grade Level

intelino/PocketLab: Impulse & Change in Momentum

Profile picture for user Rich
Submitted by Rich on Sun, 08/11/2019 - 20:59

Introduction

This lesson features Voyager and the "intelino® smart train" in a lab for AP physics students.  Designed for all ages, intelino is intuitive with its app, has built-in sensors to provide an interactive experience for the user, and is easily programmed with color snaps that allow the user to control intelino's actions.  Students are challenged to design and carry out an experiment to show that impulse is equal to change in momentum when Voyager is mounted to an intelino smart engine that suddenly reverses itself.

Subject
Grade Level

Damped Simple Harmonic Motion

Profile picture for user Rich
Submitted by Rich on Sun, 07/07/2019 - 19:47

Introduction

Damping causes oscillatory systems to dissipate energy to their surroundings.  Frictional losses are quite common in mechanical systems and result in damped simple harmonic motion.  For example, when a child stops pumping a swing, the amplitude of the oscillations gradually decay toward zero.  The same thing happens to a mass that hangs from an oscillating spring.  It is quite common for the amplitude of such oscillations to exhibit a behavior that is negative exp

Subject
Grade Level

Particulate matter and its Health Effects

Profile picture for user Danny
Submitted by Danny on Fri, 07/05/2019 - 01:22

 

First, what is particulate matter (PM)? Particulate matter is a mixture of solids and/or liquids suspended within the air. These solids and liquids are too small for the eye to see, however, if they're in a high enough concentration it will often look like a haze in the air.  The particles that make it up can be anything from pollen and dust to even molecules of water. The number at the end (ex. the 10 in PM10) is the upper limit of the particles’ diameter. A size comparison produced by the US EPA can be seen below.

How much Carbon Dioxide do you Produce? (MS-ESS3-4 )

Profile picture for user Danny
Submitted by Danny on Fri, 07/05/2019 - 00:59

It is almost instinctive when you first get the PocketLab Air to breathe directly on it just to see what happens. As seen below, of the PocketLab Air's seven sensors, five of them detect changes from a direct human breath. These parameters are carbon dioxide, particulate matter, temperature, humidity, and pressure. The most interesting of these is the sharp rise in carbon dioxide which, as the most important greenhouse gas, brings about strong connections to the topic of climate change.

The Negative Exponential Nature of Damping

Profile picture for user Rich
Submitted by Rich on Mon, 06/24/2019 - 20:50

Introduction

Damping causes oscillatory systems to dissipate energy to their surroundings.  Frictional losses are quite common in mechanical systems.  For example, when a child stops pumping a swing, the amplitude of the oscillations gradually decay toward zero.  The same thing happens to a mass that hangs from an oscillating spring.  It is quite common for the amplitude of such oscillations to exhibit a behavior that is negative exponential over time, as shown in Figure 1.  The graph indicates that if we take the amplitude at time t=0 to be 1, then the amplitude at time

Subject
Grade Level

Resonance and Damped Harmonic Motion

Profile picture for user Rich
Submitted by Rich on Thu, 06/20/2019 - 02:47

Introduction

Resonance can be defined in a number of ways.  The most common definition is that resonance occurs at the frequency at which forced oscillations produce maximum amplitude.  When the driving forces of oscillation are removed, friction gradually decreases the amplitude.  This is known as damped harmonic motion.  Most young children experience resonance as well as damped harmonic motion in schoolyard playgrounds.  They experience resonance while pumping the swing at the right frequency--the natural frequency of the swing.  They experience dampe

Subject
Grade Level

Periodic Motion: Weights vs. Springs

Profile picture for user Rich
Submitted by Rich on Thu, 06/13/2019 - 16:54

Introduction

In a well-known 1938 book entitled "Demonstration Experiments in Physics", editor Richard Sutton describes a setup for producing periodic motion of a cart using weights instead of springs.  With today's technology this experiment can be done using an air disk, and data can be collected with PocketLab Voyager's rangefinder.  The data clearly shows that not all periodic motions are simple harmonic.  The restoring force when weights are used is constant, while the restoring force with springs is proportional to the displacement.  Springs produce simple harmonic

Subject
Grade Level

Sensors for Forest Fires

Profile picture for user Danny
Submitted by Danny on Wed, 06/05/2019 - 19:41

Forest fires are a common natural disaster within western North America and pose a serious risk to many communities both nearby due to direct danger of the fire, as well as far away in the form of air pollution. Currently, in many places, some form of government employee will be in charge of looking out for forest fires and once identified, satellites and computer programs can be used to track its progression and predict where the fire will spread and where the smoke cloud will go. This allows us to evacuate individuals who may be in danger and minimize loss of life.