Skip to main content

High School

PocketLab/Phyphox Damped Lissajous Figures

Submitted by Rich on Mon, 06/11/2018 - 20:33

Lissajous Introduction

Lissajous patterns have fascinated physics students for decades.  They are commonly observed on oscilloscopes by applying simple harmonic functions with different frequencies to the vertical and horizontal inputs.  Three examples are shown in Figure 1.  From left to right, the frequency ratios are 1:2, 2:3, and 3:4.  These Lissajous patterns were created by use of the parametric equation section of The Grapher software written by the author of this lesson.  You are welcome to use this softwa

PocketLab/Phyphox Tracer Lab

Submitted by Rich on Thu, 06/07/2018 - 18:08

Introduction to this Lab

This is a quick and fun lab for makers!  In this lab, a pair of PocketLabs and Phyphox software are used to make a tracer.  As shown in Figure 1, the pair of PocketLab Voyagers are mounted to a small movable rectangular piece of plastic, perpendicular to one another and parallel to two edges of the plastic.  A small black circle is taped to the plastic to serve as the point for following the item to be traced.  In our example, a five-pointed star is traced.  One of the Voyagers is labeled X, and it

Science Lab: Helmholtz Coils Magnetic Field

Submitted by Rich on Sat, 05/19/2018 - 18:43

Helmholtz Coils

These coils come in pairs with the same number of turns of wire on each of the two coils. In "true Helmholtz" configuration: (1) the coils are wired in series with identical currents in the same direction in each coil, and (2) the coils are placed a distance apart that is equal to the radius of each coil. When in this configuration, they produce a very uniform magnetic field that is directed along their common central axis.

The Magnetic Field Around a Long Current Carrying Wire

Submitted by Rich on Mon, 05/14/2018 - 15:36

Magnetic Fields from Electric Currents

One of the classes of problems dealing with magnetic fields concerns the production of a magnetic field by a current-carrying conductor or by moving charges.  It was Oersted who discovered back in the early 1800's that currents produce magnetic effects. The quantitative relationship between the magnetic field strength and the current was later embodied in Ampere's Law, an extension of which made by Maxwell is one of the four basic equations of electromagnetism.

Magnetic Field on a Current Loop's Axis

Submitted by Rich on Wed, 05/02/2018 - 17:13

Introduction

In this lesson students will find that a current-carrying loop can be regarded as a dipole, as it generates a magnetic field for points on its axis.  Students use PocketLab Voyager and Phyphox software to compare experiment and theory for the magnetic field on the axis of a current loop.  A similar experiment not making use of Phyphox can be found by clicking this link.  An experiment making use of a magnet, instead of a

Isaac Newton and the 3rd Law of Motion

Submitted by Rich on Mon, 04/30/2018 - 14:37

Isaac Newton

Isaac Newton is well-known for the apple that hit his head and the discovery of gravity.  His three Laws of Motion, however, are among the most famous laws of physics.  In this lesson, we are especially interested in Newton’s Third Law of Motion—all forces between two objects are equal in magnitude and opposite in direction.  We will be studying collisions between two identical carts that are bouncing back-and-forth, much like a Newton’s cradle with just two steel balls.  Repelling magnets attached to the front bumpers of each of the carts al

Magnetic Dipole Experiment: Inverse Cube Law

Submitted by Rich on Sun, 04/22/2018 - 15:28

Introduction

Magnets, from the traditional alnico bar magnets to the modern neodymium magnets, have been of interest to most everyone for decades. The attraction or repulsion of two such magnets when brought close together is particularly interesting. This can be expressed by making quantitative measurements relating magnetic field strength to distance from the magnet.

Physics, Science and Math Days

Submitted by DaveBakker on Wed, 04/18/2018 - 23:40

Amusement parks provide an authentic opportunity to conduct real science and apply physics and math concepts in real-world situations.  While visiting an amusement park, not only will you have a fun-filled day of riding rides, but you will get to apply what you have learned about estimation, measurement, motion, forces, gravity, energy, and systems.

Two Voyagers Connected to a Single Device via Phyphox: A Conservation of Momentum Experiment

Submitted by Rich on Mon, 04/16/2018 - 21:15

In the study of collisions between two carts, it is desirable to collect position data for both carts.  This can be done with a pair of Voyagers, each connected to separate devices running the PocketLab app. Starting data collection on both Voyagers by simultaneously clicking data recording on both PocketLab apps is difficult.  One cannot view the data on a single device in real time, and analysis of data requires combining data from two separate devices.