Skip to main content

Physical Science

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Ideal Gas Law Verified in a Steel Balls Lab

Profile picture for user Rich
Submitted by Rich on Tue, 03/05/2019 - 22:18

Introduction to the Ideal Gas Law

The ideal gas law is commonly seen in the form PV = nRT, where P is the pressure, V is the volume, T is the absolute temperature, n is the amount of the gas in moles, and R is the ideal gas constant.  It is a composite form of Boyle's, Charles's, Avogadro's, and Gay Lussac's laws.  This law helps to explain how many things work, including bicycle pumps, hot air balloons, pressure cookers, and steam engines, just to mention a few.

Thermal Energy Particle Motion Experiment

Profile picture for user PocketLab
Submitted by PocketLab on Sat, 02/09/2019 - 00:28

How does adding thermal energy effect the particle motion of a gas? 

Thermal Energy Examples

Matter makes up everything around us. The air we breathe, the water we drink, the chair we are sitting on, the cells in our body, it is all made up of matter. Matter can exist in different states: Take water for example, it can exist as a solid (an ice cube), liquid (water in a cup for drinking), and gas  (vapor rising from a boiling pot of water). In all three states, water is always made of the same molecules, H20, and the difference is the amount of thermal energy.

Grade Level

How to teach NGSS MS-PS2-2: Newton's Second Law

Profile picture for user PocketLab
Submitted by PocketLab on Fri, 02/08/2019 - 18:43

Using a Half-Atwood Machine for Newton's Second Law

The Half-Atwood Machine consists of a cart and a weight connected by a string. It can be a perfect tool for tackling NGSS MS-PS2-2, which is centered around planning an investigation into Newton’s Second Law. Specifically, the standard says: 

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Newton’s Third Law Experiment with Crash Cushions

Profile picture for user PocketLab
Submitted by PocketLab on Wed, 02/06/2019 - 18:44

Engineering Crash Cushions to Learn Newton's Third Law

Newton's Third Law Example

Car crashes are a dangerous example of Newton's Third Law. The car exerts a large force on the wall and the wall then exerts a large force back onto the car. Civil engineers are always trying to think of new ways to make highways safer. Building crash cushions along highways that reduce the impact force of the collision will, according to Newton's Third Law, also reduce force experienced by the passengers of the car. This can save lives.

Grade Level

"High Striker" with PocketLab & ScratchX

Profile picture for user Rich
Submitted by Rich on Sat, 09/01/2018 - 19:29

Carnival Games

Most everyone enjoys a carnival!  Some like the food--from cotton candy, to funnel cakes, to ice cream.  Others enjoy rides such as the carousel, Ferris wheel, and bumper cars.  Many like to test their skills in games like "Milk Bottle", "Balloon and Dart", and "Ring Toss".  One of the most well-know skill games is "High Striker", sometimes called "Ring the Bell" or "Strongman Game".  This game is commonly played by guys trying to impress girlfriends and wives with their macho strength.  In this game, a large mallet is used to strike one end of a lever.  Th

3D Printed Pendulum for Simple Harmonic Motion

Profile picture for user clifton
Submitted by clifton on Mon, 07/09/2018 - 19:37

This 3D printed model demonstrates the physics of a simple pendulum that consists of a mass, m, hanging from an arm of length, L, and fixed at a pivot point, P. You can move the mass along the length of the arm to change the center of mass of the pendulum. If you displace the pendulum from equilibrium to an initial angle, θ, and release, the motion will be regular and repeat. This is an example of periodic motion also called simple harmonic motion.

Grade Level

PocketLab/Ozobot LIDAR Demonstration

Profile picture for user Rich
Submitted by Rich on Fri, 07/06/2018 - 23:05

Introduction

LIDAR—an acronym for Light Detection and Ranging—is a method for remote sensing to measure distances.  While LIDAR commonly uses reflected laser light to accomplish this, students can investigate LIDAR principles by using Voyager’s IR rangefinder in conjunction with Ozobot Evo.  Ozobot is a tiny programmable robot that can follow lines.  In this activity, PocketLab Voyager is mounted on top of Ozobot.  While Ozobot t

Grade Level