Skip to main content

Lessons

PocketLab Air: Measuring Particulate Matter

Profile picture for user PocketLab
Submitted by PocketLab on Mon, 05/06/2019 - 17:41

Background Information on Particulate Matter

Particulate matter consists of small particles suspended in the atmosphere. Dust, pollen, sea salt, soil particles, mold, soot, smoke, and other fine substances create a mixture of particulate matter that we inhale with every breath. According to the EPA, particulate matter greater than 10 micrometers is generally filtered away in our nose and throat. Particulates less than 10 micrometers can often pass into the lungs.

PocketLab Air: Measuring Carbon Dioxide

Profile picture for user PocketLab
Submitted by PocketLab on Mon, 05/06/2019 - 17:13

Background Information

Carbon dioxide circulates naturally in Earth’s atmosphere as part of the carbon cycle (the process in which carbon dioxide is exchanged between the atmosphere, oceans, soil, plants, and animals). According to the EPA, since the industrial revolution, humans have altered the carbon cycle through activities like burning fossil fuels, which adds CO2 to the cycle, and deforestation which reduces natural ways in which CO2 is removed. 

Air Quality Lesson Plans

Profile picture for user DaveBakker
Submitted by DaveBakker on Fri, 05/03/2019 - 21:44

Free Air Quality Lesson Plans

Bring the science of air quality into your classroom through hands-on activities, inquiry-based lessons and real science tools. These high quality lessons plans are free to download and were developed by King's University in conjunction with Telus World of Science in Edmonton.

Subject

Convert the PocketLab HotRod to an Inertia Cart

Profile picture for user Rich
Submitted by Rich on Thu, 04/25/2019 - 17:37

The PocketLab Inertia Cart

This cool inertia cart dates back to the early 1900's, but hasn't seen much action since, primarily due to a lack of ease in construction.  However, now with the PocketLab HotRod and three 3D printable parts whose .STL files are included with this lesson, you can use this demonstration in your classroom.  Depending upon the grade level of your students, you can customize the discussion as appropriate.  Concepts involved include Newton's Laws of Motion, pulleys, force, acceleration, Half-Atwood machine, inertia, and moment of inertia.

Subject
Grade Level

Newton’s Third Law

Profile picture for user DaveBakker
Submitted by DaveBakker on Tue, 04/23/2019 - 18:14

Engineering Crash Cushions to Learn Newton's Third Law

Newton's third law states that for every action, there is an equal and opposite reaction. By crashing a physics cart into a wall, various crash cushions can be used to reduce the forces experience by the cart.

Moment of Inertia / Mass Contrasted

Profile picture for user Rich
Submitted by Rich on Mon, 04/22/2019 - 15:32

Introduction to Moment of Inertia

There are numerous analogies when comparing linear and rotational motion.  At the heart of these comparisons lie the concepts of mass on one hand and moment of inertia on the other.  In addition to being a property of any physical object, mass is a measure of the resistance of an object to acceleration when a net force has been applied to the object.  Newton's Second Law of Motion expresses this in the fa

Subject
Grade Level

The "Speeder Upper" - Translational and Rotational Motion Study

Profile picture for user Rich
Submitted by Rich on Wed, 04/17/2019 - 19:08

What's a "Speeder Upper"?

As shown in Figure 1, a "Speeder Upper" is a pair of disks that are connected by a short rod of much smaller radius.  The NSTA science ruler gives you a feel for the dimensions of the Speeder Upper.  The disks are 0.5" thick and 2.5" in diameter and are connected by a short 5/16" diameter wood dowel rod.  The 3D printer stl file for the disks is provided with this lesson in the event that you want to make a Speeder Upper for use in your physics classroom.

Subject
Grade Level

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Grade Level

Ideal Gas Law Verified in a Steel Balls Lab

Profile picture for user Rich
Submitted by Rich on Tue, 03/05/2019 - 22:18

Introduction to the Ideal Gas Law

The ideal gas law is commonly seen in the form PV = nRT, where P is the pressure, V is the volume, T is the absolute temperature, n is the amount of the gas in moles, and R is the ideal gas constant.  It is a composite form of Boyle's, Charles's, Avogadro's, and Gay Lussac's laws.  This law helps to explain how many things work, including bicycle pumps, hot air balloons, pressure cookers, and steam engines, just to mention a few.

Grade Level

Moment of Inertia Challenge

Profile picture for user Rich
Submitted by Rich on Sat, 02/23/2019 - 22:18

Introduction to the Moment of Inertia Challenge

We are going to assume that you have studied the concepts of moment of inertia and physical pendulums in your physics class.  With that in mind, we present a "Moment of Inertia Challenge" for you in this lab.  As you know, moment of inertia depends not only on the mass of an object, but also on how the mass is distributed, as well as the specific axis upon which it rotates.  It is of particular interest to compare the moments of inertia of two objects with the same mass but having the mass dist

Subject
Grade Level

To access this free lesson, please sign up to receive communications from us: