Skip to main content

Maker

Maker activities to do at home or in school

Brownian Motion: Order from Chaos

Profile picture for user Rich
Submitted by Rich on Fri, 03/15/2019 - 02:27

Brownian Motion

Brownian motion can be defined as the random motion of particles in a liquid or gas caused by the bombardment from molecules in the containing medium.  Have you ever looked at dust particles in the sunlight shining through a window?  They appear to move about randomly, even defying gravity.  This is an example of Brownian motion in which the dust particles are bombarded on all sides by gas molecules in the air.  Other examples of Brownian motion include the motion of grains of pollen on the surface of still water, the dif

Grade Level

Moment of Inertia vs. Mass

Profile picture for user Rich
Submitted by Rich on Sun, 02/17/2019 - 21:06

Introduction to Moment of Inertia

There are numerous analogies when comparing linear and rotational motion.  At the heart of these comparisons lie the concepts of mass on one hand and moment of inertia on the other.  In addition to being a property of any physical object, mass is a measure of the resistance of an object to acceleration when a net force has been applied to the object.  Newton's Second Law of Motion expresses this in the familiar equation F = ma.  By analogy, the moment of inertia of any rigid obj

Subject
Grade Level

Hysteresis with Rubber Bands

Profile picture for user Rich
Submitted by Rich on Wed, 02/06/2019 - 17:49

Introduction to Hysteresis

Hysteresis can be defined as a lag time in the response of a system to forces placed on the system.  The response of the system depends not only on the present magnitude of the force but also on the previous history of the system.  From the point of view of mathematics, the response to the force is a double-valued function.  This means that one value applies when the force is increasing, while another value applies when the force is decreasing.  A graphical plot of force and re

Subject
Grade Level

Physics from a Croquet Mallet and Ball

Profile picture for user Rich
Submitted by Rich on Sat, 01/19/2019 - 20:23

Introduction

Various forms of the sport now known as croquet have been around for centuries.  Plastic or wooden balls are struck with a mallet through hoops, called wickets in the United States.  The components of a typical croquet set are shown in Figure 1.  Very popular in the UK, there is even a World Croquet Federation for those who take the sport seriously.  In the United States, it is common to set up croquet as a garden game at graduation and birthday parties.  But who would have thought that a croquet ball and mallet equipped with PocketLab Voyager and the PocketL

Subject
Grade Level

Tactile Sensor as an ON/OFF ScratchX Switch

Profile picture for user Rich
Submitted by Rich on Sun, 08/26/2018 - 01:04

A Tactile Sensor ON/OFF ScratchX Switch

This lesson provides an example of how to ScratchX program PocketLab Voyager's tactile sensor as an ON/OFF switch.  If you have a device such as a light bulb, motor, or robot that is under control of ScratchX, then the code in this lesson may be a starting point for you.  The ScratchX program assumes that the device can be in any one of two possible states, which we will call ON and OFF.

PocketLab/Ozobot LIDAR Demonstration

Profile picture for user Rich
Submitted by Rich on Fri, 07/06/2018 - 23:05

Introduction

LIDAR—an acronym for Light Detection and Ranging—is a method for remote sensing to measure distances.  While LIDAR commonly uses reflected laser light to accomplish this, students can investigate LIDAR principles by using Voyager’s IR rangefinder in conjunction with Ozobot Evo.  Ozobot is a tiny programmable robot that can follow lines.  In this activity, PocketLab Voyager is mounted on top of Ozobot.  While Ozobot t

Grade Level

Relative Velocity Lab: PocketLab/Ozobot/LEGO

Profile picture for user Rich
Submitted by Rich on Sat, 06/30/2018 - 19:32

Introduction to Relative Velocity

Airplanes can experience head winds or tail winds that affect their flight time.  Similarly, motorboats on a river experience ground velocities that are dependent on whether they are traveling upstream or downstream.  Both of these phenomena are associated with a physics concept known as relative velocity--the main topic of this lab.

Grade Level

Voyager Rides an RC Car for Summertime Fun

Profile picture for user Rich
Submitted by Rich on Wed, 06/20/2018 - 18:18

RC Car Fun!!!

Here is a fun summertime activity!  Race an RC car with PocketLab Voyager. Challenge your friends to see who can negotiate a series of cones in the shortest amount of time without hitting any of the cones.  Start and end times are obtained by Voyager's magnetometer as the RC car passes by magnets.  

PocketLab/Phyphox Damped Lissajous Figures

Profile picture for user Rich
Submitted by Rich on Mon, 06/11/2018 - 20:33

Lissajous Introduction

Lissajous patterns have fascinated physics students for decades.  They are commonly observed on oscilloscopes by applying simple harmonic functions with different frequencies to the vertical and horizontal inputs.  Three examples are shown in Figure 1.  From left to right, the frequency ratios are 1:2, 2:3, and 3:4.  These Lissajous patterns were created by use of the parametric equation section of The Grapher software written by the author of this lesson.  You are welcome to use this softwa

Subject
Grade Level

To access this free lesson, please sign up to receive communications from us: