Skip to main content

High School

Physical Pendulum: Finding Moment of Inertia

Profile picture for user Rich
Submitted by Rich on Tue, 02/12/2019 - 18:22

Introduction to the Physical Pendulum

Mount any rigid body such that it can swing in a vertical plane about an axis passing through the body.  You have constructed what is known as a physical pendulum.  The video below shows an example of such a pendulum.  In this video, a rigid circular body is swinging about an axis very close to the edge of the circle.  The circle was cut from a piece of cardboard.  PocketLab Voyager is resting at the bottom of a ring stand directly below the pivot point of the pendulum.  A tiny magnet has been attached to the bottom of the ci

Subject
Grade Level

How to teach NGSS MS-PS2-2: Newton's Second Law

Profile picture for user PocketLab
Submitted by PocketLab on Fri, 02/08/2019 - 18:43

Using a Half-Atwood Machine for Newton's Second Law

The Half-Atwood Machine consists of a cart and a weight connected by a string. It can be a perfect tool for tackling NGSS MS-PS2-2, which is centered around planning an investigation into Newton’s Second Law. Specifically, the standard says: 

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Hysteresis with Rubber Bands

Profile picture for user Rich
Submitted by Rich on Wed, 02/06/2019 - 17:49

Introduction to Hysteresis

Hysteresis can be defined as a lag time in the response of a system to forces placed on the system.  The response of the system depends not only on the present magnitude of the force but also on the previous history of the system.  From the point of view of mathematics, the response to the force is a double-valued function.  This means that one value applies when the force is increasing, while another value applies when the force is decreasing.  A graphical plot of force and re

Subject
Grade Level

Rotational Motion: Moment of Inertia

Profile picture for user Rich
Submitted by Rich on Thu, 01/24/2019 - 20:05

Rotational Motion and Moment of Inertia Lab Setup

Figure 1 shows a ramp and three distinctly different objects that you will release from rest at the top.  Each object will roll downward to the end of the ramp without slipping, resulting in rotational motion.  The roll of Gorilla tape has a shape known as an annular cylinder.  The can of jellied cranberry sauce is a solid cylinder.  The cardboard tube, in contrast to the can, is hollow.  All three of these objects will rotate about their central cylinder axis while rolling down the ramp.  Each of these three objects has a

Subject
Grade Level

Physics from a Croquet Mallet and Ball

Profile picture for user Rich
Submitted by Rich on Sat, 01/19/2019 - 20:23

Introduction

Various forms of the sport now known as croquet have been around for centuries.  Plastic or wooden balls are struck with a mallet through hoops, called wickets in the United States.  The components of a typical croquet set are shown in Figure 1.  Very popular in the UK, there is even a World Croquet Federation for those who take the sport seriously.  In the United States, it is common to set up croquet as a garden game at graduation and birthday parties.  But who would have thought that a croquet ball and mallet equipped with PocketLab Voyager and the PocketL

Subject
Grade Level

PocketLab Voyager: Newton's Law of Cooling

Profile picture for user Rich
Submitted by Rich on Thu, 01/03/2019 - 03:02

Newton's Law of Cooling

In this experiment students will use PocketLab Voyager to collect data related to the cooling of a container of hot water as time goes on.  Sir Isaac Newton modeled this process under the assumption that the rate at which heat moves from one object to another is proportional to the difference in temperature between the two objects, i.e., the cooling rate = -k*TempDiff.  In the case of this experiment, the two objects are water and air.

Subject
Grade Level

Fluid Pressure in a Fluid at Rest

Profile picture for user Rich
Submitted by Rich on Fri, 12/21/2018 - 01:22

Introduction

In a PockeLab lesson entitled "Hydrostatic Pressure Lab", posted by kwarnke in October 2017, students investigate the relationship between the height of a column of water and hydrostatic pressure.  The lab results worked very well in this regard, but the apparatus uses a 5-gallon jug with modifications, a bicycle pump, and 5 meters of vinyl tubing.  We should be able to come up with a much simpler and less expensive fluid pressure apparatus to achieve the same result, as the

Subject
Grade Level

Rolling Resistance Lab: CloudLab/Mini HotRod

Profile picture for user Rich
Submitted by Rich on Tue, 12/11/2018 - 16:25

Rolling Resistance Introduction

Rolling resistance is a force that opposes the motion when an object rolls along a surface.  There are many examples of objects experiencing rolling resistance:  car or bicycle tires on pavement, skateboard wheels on a half pipe ramp, steel wheels on a railroad track, ball bearings in a pulley, bowling balls on a bowling lane, and carts rolling on a dynamics track, just to mention a few.  Many factors can affect the magnitude of the forces associated with rolling resistance.

Subject
Grade Level

Crash Cushioning Lab - NGSS Based

Profile picture for user Rich
Submitted by Rich on Thu, 12/06/2018 - 16:09

Introduction to Crash Cushioning

In addition to automobile features that promote road safety, there has been and continues to be a great deal of work on highway features that save lives.  An earlier lab entitled Crash Cushion Investigation, submitted by PocketLab, makes use of the PocketLab HotRod to investigate crash cushioning similar to that shown in Figure 1.    

Grade Level